• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • QuRE: The Quantum Resource Estimator Toolbox

    Author(s)
    Suchara, Martin
    Kubiatowicz, John
    Faruque, Arvin
    Chong, Frederic T.
    Lai, Ching-Yi
    Paz, Gerardo
    Griffith University Author(s)
    Paz Silva, Gerardo A.
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    We describe QuRE, the Quantum Resource Estimator. QuRE is a layout estimation tool that estimates the cost of practical implementations of quantum circuits in a variety of competing physical quantum technologies and with a variety of strategies for fault tolerant encoding. For each specified algorithm, QuRE estimates quantities such as number of physical qubits, execution time, probability of success of the computation, and physical gate counts for elementary quantum gate types of a specified technology. Out of the box, QuRE supports estimation for six physical quantum technologies, seven quantum algorithms, and with error ...
    View more >
    We describe QuRE, the Quantum Resource Estimator. QuRE is a layout estimation tool that estimates the cost of practical implementations of quantum circuits in a variety of competing physical quantum technologies and with a variety of strategies for fault tolerant encoding. For each specified algorithm, QuRE estimates quantities such as number of physical qubits, execution time, probability of success of the computation, and physical gate counts for elementary quantum gate types of a specified technology. Out of the box, QuRE supports estimation for six physical quantum technologies, seven quantum algorithms, and with error correction using the Steane [1], [2], Bacon-Shor [3], Knill [4] or surface [5], [6] error correction codes. Moreover, QuRE is extendable and can easily accommodate other choices. After describing QuRE, we use it to investigate the tradeoff between concatenated and surface error correction coding techniques, demonstrating the existence of a crossover point for the Ground State Estimation Algorithm
    View less >
    Conference Title
    2013 IEEE 31st International Conference on Computer Design (ICCD)
    DOI
    https://doi.org/10.1109/ICCD.2013.6657074
    Subject
    Computer Hardware not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/172687
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander