• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Computational and experimental model of nano-engineered drug delivery system for trabecular bone

    Author(s)
    Mokhtarzadeh, Hossein
    Aw, Moom S
    Khalid, Kamarul A
    Gulati, Karan
    Atkins, Gerald J
    Findlay, David M
    Losic, Dusan
    Pivonka, Peter
    Griffith University Author(s)
    Gulati, Karan
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    This paper describes fully coupled advective-diffusive transport of a drug through a trabecular bone sample in a perfused bioreactor. We used the analogy between heat transfer and mass transfer in order to derive the effective transport properties of the porous material such as effective diffusion coefficient and permeability. This allowed employing the heat transfer equations in Abaqus and they were solved using the finite element (FE) method. The average velocity was calculated using the Darcy-Brinkman-Forchheimer equation. Simulation results suggest that effective diffusivity plays a major role in the spatio-temporal ...
    View more >
    This paper describes fully coupled advective-diffusive transport of a drug through a trabecular bone sample in a perfused bioreactor. We used the analogy between heat transfer and mass transfer in order to derive the effective transport properties of the porous material such as effective diffusion coefficient and permeability. This allowed employing the heat transfer equations in Abaqus and they were solved using the finite element (FE) method. The average velocity was calculated using the Darcy-Brinkman-Forchheimer equation. Simulation results suggest that effective diffusivity plays a major role in the spatio-temporal distribution of the drug in the bone sample. Bone permeability was found less effective on manipulating the spatial distribution of drug. The bioreactor perfusion rate played a major role in the distribution of the drug throughout the bone sample. Increased perfusion rate leads to clearance of the drug towards the outlet of the bioreactor. It was found that even for moderate bioreactor perfusion rates the drug was concentrated towards the outlet, while zero concentration of drug was observed around the inlet. The numerical simulations showed that the essential effects of local drug release in bone can be captured using fluid flow through porous media theory. Our simulation results revealed that drug delivery is a multi-factorial phenomenon. Therefore, a mathematical model can enhance our understanding of this complicated problem that is difficult to characterize using experimental techniques alone.
    View less >
    Conference Title
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV
    Publisher URI
    http://www.wccm-eccm-ecfd2014.org
    Subject
    Materials engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/172746
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander