• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • High-throughput novel microsatellite marker of faba bean via next generation sequencing

    Thumbnail
    View/Open
    YangPUB1916.pdf (914.1Kb)
    Author(s)
    Yang, Tao
    Bao, Shi-Ying
    Ford, Rebecca
    Jia, Teng-Jiao
    Guan, Jian-Ping
    He, Yu-Hua
    Sun, Xue-Lian
    Jiang, Jun-Ye
    Hao, Jun-Jie
    Zhang, Xiao-Yan
    Zong, Xu-Xiao
    Griffith University Author(s)
    Ford, Rebecca
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Background: Faba bean (Vicia faba L.) is an important food legume crop, grown for human consumption globally including in China, Turkey, Egypt and Ethiopia. Although genetic gain has been made through conventional selection and breeding efforts, this could be substantially improved through the application of molecular methods. For this, a set of reliable molecular markers representative of the entire genome is required. Results: A library with 125,559 putative SSR sequences was constructed and characterized for repeat type and length from a mixed genome of 247 spring and winter sown faba bean genotypes using 454 sequencing. ...
    View more >
    Background: Faba bean (Vicia faba L.) is an important food legume crop, grown for human consumption globally including in China, Turkey, Egypt and Ethiopia. Although genetic gain has been made through conventional selection and breeding efforts, this could be substantially improved through the application of molecular methods. For this, a set of reliable molecular markers representative of the entire genome is required. Results: A library with 125,559 putative SSR sequences was constructed and characterized for repeat type and length from a mixed genome of 247 spring and winter sown faba bean genotypes using 454 sequencing. A suit of 28,503 primer pair sequences were designed and 150 were randomly selected for validation. Of these, 94 produced reproducible amplicons that were polymorphic among 32 faba bean genotypes selected from diverse geographical locations. The number of alleles per locus ranged from 2 to 8, the expected heterozygocities ranged from 0.0000 to 1.0000, and the observed heterozygosities ranged from 0.0908 to 0.8410. The validation by UPGMA cluster analysis of 32 genotypes based on Nei's genetic distance, showed high quality and effectiveness of those novel SSR markers developed via next generation sequencing technology. Conclusions: Large scale SSR marker development was successfully achieved using next generation sequencing of the V. faba genome. These novel markers are valuable for constructing genetic linkage maps, future QTL mapping, and marker-assisted trait selection in faba bean breeding efforts.
    View less >
    Journal Title
    BMC Genomics
    Volume
    13
    Issue
    1
    DOI
    https://doi.org/10.1186/1471-2164-13-602
    Copyright Statement
    © 2012 Yang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Genomics
    Biological Sciences
    Information and Computing Sciences
    Medical and Health Sciences
    Publication URI
    http://hdl.handle.net/10072/172828
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander