• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Practical analysis framework for software-based attestation scheme

    Author(s)
    Li, L
    Hu, H
    Sun, J
    Liu, Y
    Dong, JS
    Griffith University Author(s)
    Dong, Jin-Song
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    An increasing number of ”smart” embedded devices are employed in our living environment nowadays. Unlike traditional computer systems, these devices are often physically accessible to the attackers. It is therefore almost impossible to guarantee that they are un-compromised, i.e., that indeed the devices are executing the intended software. In such a context, software-based attestation is deemed as a promising solution to validate their software integrity. It guarantees that the software running on the embedded devices are un-compromised without any hardware support. However, designing software-based attestation protocols ...
    View more >
    An increasing number of ”smart” embedded devices are employed in our living environment nowadays. Unlike traditional computer systems, these devices are often physically accessible to the attackers. It is therefore almost impossible to guarantee that they are un-compromised, i.e., that indeed the devices are executing the intended software. In such a context, software-based attestation is deemed as a promising solution to validate their software integrity. It guarantees that the software running on the embedded devices are un-compromised without any hardware support. However, designing software-based attestation protocols are shown to be error-prone. In this work, we develop a framework for design and analysis of software-based attestation protocols. We first propose a generic attestation scheme that captures most existing software-based attestation protocols. After formalizing the security criteria for the generic scheme, we apply our analysis framework to several well-known software-based attestation protocols and report various potential vulnerabilities. To the best of our knowledge, this is the first practical analysis framework for software-based attestation protocols.
    View less >
    Journal Title
    Lecture Notes in Computer Science
    Volume
    8829
    DOI
    https://doi.org/10.1007/978-3-319-11737-9_19
    Subject
    Software engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/172896
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander