• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Optimizing selection of competing services with probabilistic hierarchical refinement

    Author(s)
    Tan, TH
    Chen, M
    Sun, J
    Liu, Y
    André, É
    Xue, Y
    Dong, JS
    Griffith University Author(s)
    Dong, Jin-Song
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Recently, many large enterprises (e.g., Netflix, Amazon) have decomposed their monolithic application into services, and composed them to fulfill their business functionalities. Many hosting services on the cloud, with different Quality of Service (QoS) (e.g., availability, cost), can be used to host the services. This is an example of competing services. QoS is crucial for the satisfaction of users. It is important to choose a set of services that maximize the overall QoS, and satisfy all QoS requirements for the service composition. This problem, known as optimal service selection, is NP-hard. Therefore, an effective method ...
    View more >
    Recently, many large enterprises (e.g., Netflix, Amazon) have decomposed their monolithic application into services, and composed them to fulfill their business functionalities. Many hosting services on the cloud, with different Quality of Service (QoS) (e.g., availability, cost), can be used to host the services. This is an example of competing services. QoS is crucial for the satisfaction of users. It is important to choose a set of services that maximize the overall QoS, and satisfy all QoS requirements for the service composition. This problem, known as optimal service selection, is NP-hard. Therefore, an effective method for reducing the search space and guiding the search process is highly desirable. To this end, we introduce a novel technique, called Probabilistic Hierarchical Refinement (ProHR). ProHR effectively reduces the search space by removing competing services that cannot be part of the selection. ProHR provides two methods, probabilistic ranking and hierarchical refinement, that enable smart exploration of the reduced search space. Unlike existing approaches that perform poorly when QoS requirements become stricter, ProHR maintains high performance and accuracy, independent of the strictness of the QoS requirements. ProHR has been evaluated on a publicly available dataset, and has shown significant improvement over existing approaches.
    View less >
    Conference Title
    Proceedings - International Conference on Software Engineering
    Volume
    14-22-May-2016
    DOI
    https://doi.org/10.1145/2884781.2884861
    Subject
    Software engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/172973
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander