• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies

    Author(s)
    Li, Zhengtao
    Zhu, Zhening
    Liu, Wenjing
    Zhou, Yunlong
    Han, Bing
    Gao, Yan
    Tang, Zhiyong
    Griffith University Author(s)
    Tang, Zhiyong
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Reversible plasmonic circular dichroism (CD) responses are realized for the first time based on temperature-dependent assembly and disassembly of Au nanorod (Au NR) and DNA hybrids. Compared with the conventional UV–vis absorption spectra, the changes in both intensity and line shape of plasmonic CD signals are much more pronounced, leading to a preliminary detection limit of DNA as low as 75 nM. The mechanism and influence factors of reversible plasmonic CD responses are explored.Reversible plasmonic circular dichroism (CD) responses are realized for the first time based on temperature-dependent assembly and disassembly of Au nanorod (Au NR) and DNA hybrids. Compared with the conventional UV–vis absorption spectra, the changes in both intensity and line shape of plasmonic CD signals are much more pronounced, leading to a preliminary detection limit of DNA as low as 75 nM. The mechanism and influence factors of reversible plasmonic CD responses are explored.
    View less >
    Journal Title
    Journal of the American Chemical Society
    Volume
    134
    Issue
    7
    DOI
    https://doi.org/10.1021/ja209981n
    Subject
    Chemical sciences
    Inorganic chemistry not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/172987
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander