• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Mechanism of Bacterial Interference with TLR4 Signaling by Brucella Toll/Interleukin-1 Receptor Domain-containing Protein TcpB

    Thumbnail
    View/Open
    AlaidarousPUB4.pdf (5.630Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Alaidarous, Mohammed
    Ve, Thomas
    Casey, Lachlan W
    Valkov, Eugene
    Ericsson, Daniel J
    Ullah, M Obayed
    Schembri, Mark A
    Mansell, Ashley
    Sweet, Matthew J
    Kobe, Bostjan
    Griffith University Author(s)
    Ve, Thomas
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Upon activation of Toll-like receptors (TLRs), cytoplasmic Toll/interleukin-1 receptor (TIR) domains of the receptors undergo homo- or heterodimerization. This in turn leads to the recruitment of adaptor proteins, activation of transcription factors, and the secretion of pro-inflammatory cytokines. Recent studies have described the TIR domain-containing protein from Brucella melitensis, TcpB (BtpA/Btp1), to be involved in virulence and suppression of host innate immune responses. TcpB interferes with TLR4 and TLR2 signaling pathways by a mechanism that remains controversial. In this study, we show using co-immunoprecipitation ...
    View more >
    Upon activation of Toll-like receptors (TLRs), cytoplasmic Toll/interleukin-1 receptor (TIR) domains of the receptors undergo homo- or heterodimerization. This in turn leads to the recruitment of adaptor proteins, activation of transcription factors, and the secretion of pro-inflammatory cytokines. Recent studies have described the TIR domain-containing protein from Brucella melitensis, TcpB (BtpA/Btp1), to be involved in virulence and suppression of host innate immune responses. TcpB interferes with TLR4 and TLR2 signaling pathways by a mechanism that remains controversial. In this study, we show using co-immunoprecipitation analyses that TcpB interacts with MAL, MyD88, and TLR4 but interferes only with the MAL-TLR4 interaction. We present the crystal structure of the TcpB TIR domain, which reveals significant structural differences in the loop regions compared with other TIR domain structures. We demonstrate that TcpB forms a dimer in solution, and the crystal structure reveals the dimerization interface, which we validate by mutagenesis and biophysical studies. Our study advances the understanding of the molecular mechanisms of host immunosuppression by bacterial pathogens.
    View less >
    Journal Title
    Journal of Biological Chemistry
    Volume
    289
    Issue
    2
    DOI
    https://doi.org/10.1074/jbc.M113.523274
    Copyright Statement
    This research was originally published in Journal of Biological Chemistry (JBC). Mohammed Alaidarous et al., Mechanism of Bacterial Interference with TLR4 Signaling by Brucella Toll/Interleukin-1 Receptor Domain-containing Protein TcpB, Journal of Biological Chemistry (JBC) VOL. 289, NO. 2, pp. 654 –668, 2014. Copyright the American Society for Biochemistry and Molecular Biology. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive version.
    Subject
    Chemical sciences
    Biological sciences
    Biochemistry and cell biology not elsewhere classified
    Biomedical and clinical sciences
    Publication URI
    http://hdl.handle.net/10072/173215
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander