• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Observer-based H∞ control for discrete-time stochastic systems with quantisation and random communication delays

    Author(s)
    Yan, Huaicheng
    Su, Zhenzhen
    Zhang, Hao
    Yang, Fuwen
    Griffith University Author(s)
    Yang, Fuwen
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    In this study, the authors are concerned with the observer-based quantised H ∞ control problem for a class of discrete-time stochastic systems with random communication delays. The system under consideration involves signals quantisation, state-dependent disturbance as well as random communication delays. The measured output and the control input quantisation are considered simultaneously by using the sector bound approach, while the random communication delays from the sensor to the controller and from the controller to the plant are modelled by a linear function of the stochastic variable satisfying Bernoulli random binary ...
    View more >
    In this study, the authors are concerned with the observer-based quantised H ∞ control problem for a class of discrete-time stochastic systems with random communication delays. The system under consideration involves signals quantisation, state-dependent disturbance as well as random communication delays. The measured output and the control input quantisation are considered simultaneously by using the sector bound approach, while the random communication delays from the sensor to the controller and from the controller to the plant are modelled by a linear function of the stochastic variable satisfying Bernoulli random binary distribution. It is aimed at designing an observer-based controller such that the dynamics of the closed-loop system is guaranteed to be exponentially stable in the mean square, and a prescribed H ∞ disturbance attenuation level is also achieved. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.
    View less >
    Journal Title
    IET Control Theory and Applications
    Volume
    7
    Issue
    3
    DOI
    https://doi.org/10.1049/iet-cta.2012.0600
    Subject
    Applied mathematics
    Mechanical engineering
    Publication URI
    http://hdl.handle.net/10072/173448
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander