• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Improving conservation outcomes for coral reefs affected by future oil palm development in Papua New Guinea

    Author(s)
    Tulloch, Vivitskaia JD
    Brown, Christopher J
    Possingham, Hugh P
    Jupiter, Stacy D
    Maina, Joseph M
    Klein, Carissa
    Griffith University Author(s)
    Brown, Chris J.
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Clearing forests for oil palm plantations is a major threat to tropical terrestrial biodiversity, and may potentially have large impacts on downstream marine ecosystems (e.g., coral reefs). However, little is known about the impacts of runoff from oil palm plantations, so it is not clear how oil palm development should be modified to minimize the risk of degrading marine ecosystems, or how marine conservation plans should be modified to account for the impacts of oil palm development. We coupled terrestrial and marine biophysical models to simulate changes in sediment/nutrient composition on reefs as a result of oil palm ...
    View more >
    Clearing forests for oil palm plantations is a major threat to tropical terrestrial biodiversity, and may potentially have large impacts on downstream marine ecosystems (e.g., coral reefs). However, little is known about the impacts of runoff from oil palm plantations, so it is not clear how oil palm development should be modified to minimize the risk of degrading marine ecosystems, or how marine conservation plans should be modified to account for the impacts of oil palm development. We coupled terrestrial and marine biophysical models to simulate changes in sediment/nutrient composition on reefs as a result of oil palm development in Papua New Guinea, and predicted the response of coral and seagrass ecosystems to different land-use scenarios. The condition of almost 60% of coastal ecosystems were predicted to be substantially degraded (more than a 50% decline from their initial state) after 5 years if all suitable land was converted to oil palm, with only 4% of coastal ecosystems improving in condition as trees matured. We evaluated marine ecosystem condition if the oil palm developments were consistent with global sustainability guidelines and found that there were only slight improvements in ecosystems condition compared to the scenario with complete conversion of forest to oil palm. Substantially reducing the impact of oil palm development on marine ecosystems required limiting new plantings to hill slopes below 15°, a more stringent restriction than currently allowed for in the sustainability guidelines. We evaluated priority marine conservation areas given current land-use and found reef ecosystems in these areas will likely be heavily degraded in the future from runoff. We find that marine conservation plans should be modified to prioritize turbid areas where coral communities may be more tolerant of increased suspended sediment in the water. The approach developed here provides guidelines for modifying marine conservation priorities in areas with oil palm development. Importantly, oil palm development guidelines cannot be truly ecologically sustainable unless they are modified to account for the impacts of oil palm on coastal marine ecosystems.
    View less >
    Journal Title
    Biological Conservation
    Volume
    203
    DOI
    https://doi.org/10.1016/j.biocon.2016.08.013
    Subject
    Conservation and Biodiversity
    Environmental Sciences
    Biological Sciences
    Agricultural and Veterinary Sciences
    Publication URI
    http://hdl.handle.net/10072/173576
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander