• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Optimizing irrigation efficiency improvements in the Aral Sea Basin

    Author(s)
    Bekchanov, Maksud
    Ringler, Claudia
    Bhaduri, Anik
    Jeuland, Marc
    Griffith University Author(s)
    Bhaduri, Anik
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Water scarcity driven by climate change, growing demand, and inefficient management of water and related infrastructure is a serious threat to livelihoods in the Aral Sea Basin (ASB) of Central Asia. In recent decades, downstream water shortages have become increasingly common and inflows into the Aral Sea have become very limited. Meanwhile, water losses are enormous both at conveyance and field levels because of outdated infrastructure and the dominance of highly inefficient basin and furrow irrigation methods. Intensification and modernization of irrigation systems, while requiring investment of scarce capital resources, ...
    View more >
    Water scarcity driven by climate change, growing demand, and inefficient management of water and related infrastructure is a serious threat to livelihoods in the Aral Sea Basin (ASB) of Central Asia. In recent decades, downstream water shortages have become increasingly common and inflows into the Aral Sea have become very limited. Meanwhile, water losses are enormous both at conveyance and field levels because of outdated infrastructure and the dominance of highly inefficient basin and furrow irrigation methods. Intensification and modernization of irrigation systems, while requiring investment of scarce capital resources, could thus substantially reduce non-beneficial water consumption and help in coping with increasing water scarcity. This study applies a hydro-economic model that solves for the investment in improved irrigation efficiency across the various irrigation sites in the ASB that delivers the highest economic gains. Improvement of the efficiency of irrigation canals and implementation of field efficiency investments and practices, such as drip irrigation, and alternate dry or short furrow irrigation (for rice), would substantially improve economic outcomes. Conveyance efficiency investments are particularly worthwhile in downstream regions where sandy soils are common and return flows largely feed saline lakes in tail-end depressions. Meanwhile, field-level efficiency should be fully upgraded in all rice-producing regions through the use of drip and alternate wet and dry irrigation, as well as with drip irrigation in the cotton-producing Ferghana Valley of the Syr Darya Basin. The value of these improvements increases with reduced water availability. Implementation of an optimal set of investments could increase basinwide benefits by 20% (from US$ 3.2 to 3.8 billion) under normal water availability and by 40% (from US$ 2.5 to 3.5 billion) under dry conditions (80% of normal supply).
    View less >
    Journal Title
    Water Resources and Economics
    Volume
    13
    DOI
    https://doi.org/10.1016/j.wre.2015.08.003
    Subject
    Applied economics
    Environment and resource economics
    Publication URI
    http://hdl.handle.net/10072/173686
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander