Correlation between molecular features and electrochemical properties using an artificial neural network
Author(s)
Chen, Fiona Fang
Breedon, Michael
White, Paul
Chu, Clement
Mallick, Dwaipayan
Thomas, Sebastian
Sapper, Erik
Cole, Ivan
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
The increasing demand for environmentally-friendly and non-toxic coating systems from the aerospace and heavy industry sectors is driving innovation in corrosion inhibitor design and functional coating development. A fundamental understanding of how molecular structure and functionality influences the electrochemical responses of inhibited coatings is crucial for the design of effective functional coatings to replace stalwart, yet highly toxic industrial solutions. In this paper, an artificial neural network approach is presented to quantitatively study the relationship between the structural/molecular features of inhibitor ...
View more >The increasing demand for environmentally-friendly and non-toxic coating systems from the aerospace and heavy industry sectors is driving innovation in corrosion inhibitor design and functional coating development. A fundamental understanding of how molecular structure and functionality influences the electrochemical responses of inhibited coatings is crucial for the design of effective functional coatings to replace stalwart, yet highly toxic industrial solutions. In this paper, an artificial neural network approach is presented to quantitatively study the relationship between the structural/molecular features of inhibitor compounds and their experimentally measured electrochemical properties. The presented method is applied to correlate molecular features of corrosion inhibitors with experimentally obtained corrosion potential (Ecorr), corrosion current (Icorr) and anodic/cathodic Tafel slopes. The neural network model, trained through an automatic optimization process, was able to predict the electrochemical performance for a given inhibitor molecule candidate. We will demonstrate how it can be utilised to assess the impact of molecular structure on the final effectiveness of the candidate corrosion inhibitor molecule. The presented neural network learning method could be applied to other areas in materials science for accelerating general materials discovery and functional coating design.
View less >
View more >The increasing demand for environmentally-friendly and non-toxic coating systems from the aerospace and heavy industry sectors is driving innovation in corrosion inhibitor design and functional coating development. A fundamental understanding of how molecular structure and functionality influences the electrochemical responses of inhibited coatings is crucial for the design of effective functional coatings to replace stalwart, yet highly toxic industrial solutions. In this paper, an artificial neural network approach is presented to quantitatively study the relationship between the structural/molecular features of inhibitor compounds and their experimentally measured electrochemical properties. The presented method is applied to correlate molecular features of corrosion inhibitors with experimentally obtained corrosion potential (Ecorr), corrosion current (Icorr) and anodic/cathodic Tafel slopes. The neural network model, trained through an automatic optimization process, was able to predict the electrochemical performance for a given inhibitor molecule candidate. We will demonstrate how it can be utilised to assess the impact of molecular structure on the final effectiveness of the candidate corrosion inhibitor molecule. The presented neural network learning method could be applied to other areas in materials science for accelerating general materials discovery and functional coating design.
View less >
Journal Title
Materials and Design
Volume
112
Subject
Manufacturing engineering
Materials engineering
Materials engineering not elsewhere classified
Mechanical engineering