Show simple item record

dc.contributor.authorTrivedi, Nayruti Siddharth
dc.contributor.authorVenkatraman, Murali Sankar
dc.contributor.authorChu, Clement
dc.contributor.authorCole, Ivan S
dc.description.abstractAs structures built now will be expected to last well past 2064 (50 years) it is vital that the effect of climate change be considered in their design and material selection. In particular changes in the rate of corrosion of metal components must be considered. To this end this study estimates the maximum likely change in the corrosion rate for the year 2070 so it can be included in current design. Changes in corrosion are estimated for 11 coastal and inland locations in Australia. For each station the climatic data (3-hourly) in 2070 is estimated by modifying current data with probable changes based on two climate change models (CSIRO: CSIRO-Mk 3.5 and MRI: MRI-CGCM 3.2.2). The former is for high global warming rate and the later the A1FI scenario. This climatic data is then run the Corrosion “predictor” (a multi-scale process model) to predict corrosion at each location. It is found that significant changes occur with corrosion in coastal locations increasing substantially, in contrast the corrosion at inland locations will decrease moderately. The increase in coastal locations is associated with a greater build up of salt due to less frequent rain evens while the reduction in inland locations is associated with a reduction in RH and thus surface wetness.
dc.relation.ispartofjournalClimatic Change
dc.subject.fieldofresearchEnvironmental Nanotechnology
dc.titleEffect of climate change on corrosion rates of structures in Australia
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.hasfulltextNo Full Text
gro.griffith.authorCole, Ivan

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record