Photoluminescence enhancement of carbon dots by gold nanoparticles conjugated via PAMAM dendrimers
Author(s)
Zong, Jie
Yang, Xiaoling
Trinchi, Adrian
Hardin, Simon
Cole, Ivan
Zhu, Yihua
Li, Chunzhong
Muster, Tim
Wei, Gang
Griffith University Author(s)
Year published
2013
Metadata
Show full item recordAbstract
Carbon dots (CDs) have many fascinating fluorescent properties, however, their low quantum yield limits their applications. In this study, the photoluminescence (PL) of CDs in the vicinity of gold nanoparticles (Au NPs) is enhanced significantly due to the surface plasmon resonance (SPR) of the Au NPs. This is achieved by conjugating Au NPs and CDs to dendrimers (PAMAM) through an amidation reaction, resulting in the formation of the Au–PAMAM–CD conjugates. The maximum 62-fold enhancement was obtained with an optimized molar ratio between Au NPs, PAMAM, and CDs. In this process, PAMAM, which serves as a spacer, can keep Au ...
View more >Carbon dots (CDs) have many fascinating fluorescent properties, however, their low quantum yield limits their applications. In this study, the photoluminescence (PL) of CDs in the vicinity of gold nanoparticles (Au NPs) is enhanced significantly due to the surface plasmon resonance (SPR) of the Au NPs. This is achieved by conjugating Au NPs and CDs to dendrimers (PAMAM) through an amidation reaction, resulting in the formation of the Au–PAMAM–CD conjugates. The maximum 62-fold enhancement was obtained with an optimized molar ratio between Au NPs, PAMAM, and CDs. In this process, PAMAM, which serves as a spacer, can keep Au NPs and CDs at an appropriate distance for PL enhancement. The adjustment of the amount of Au NPs or CDs linked to PAMAM can induce the optimum PL enhancement. This strategy can be easily applied to different metal–space–fluorophore systems to enhance the fluorescence of fluorophores.
View less >
View more >Carbon dots (CDs) have many fascinating fluorescent properties, however, their low quantum yield limits their applications. In this study, the photoluminescence (PL) of CDs in the vicinity of gold nanoparticles (Au NPs) is enhanced significantly due to the surface plasmon resonance (SPR) of the Au NPs. This is achieved by conjugating Au NPs and CDs to dendrimers (PAMAM) through an amidation reaction, resulting in the formation of the Au–PAMAM–CD conjugates. The maximum 62-fold enhancement was obtained with an optimized molar ratio between Au NPs, PAMAM, and CDs. In this process, PAMAM, which serves as a spacer, can keep Au NPs and CDs at an appropriate distance for PL enhancement. The adjustment of the amount of Au NPs or CDs linked to PAMAM can induce the optimum PL enhancement. This strategy can be easily applied to different metal–space–fluorophore systems to enhance the fluorescence of fluorophores.
View less >
Journal Title
Nanoscale
Volume
5
Issue
22
Subject
Physical sciences
Chemical sciences
Nanotechnology not elsewhere classified