• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A green MnMgZn phosphate coating for steel pipelines transporting CO2 rich fluids

    Author(s)
    Morks, MF
    Corrigan, P
    Birbilis, N
    Cole, IS
    Griffith University Author(s)
    Cole, Ivan
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    The transport of CO2 rich fluids via steel pipelines in the CO2 capture and storage (CCS) process requires a strategy for internal corrosion protection in cases where the stream is acidic and hence corrosive due to the formation of carbonic acid. Such protection strategies have been scarcely studied and will need significant research. In this study, one possibility to protect the steel pipelines from internal corrosion during CO2 transport is presented based on treatment of the internal surface with a vanadate-based MnMgZn phosphate coating. The addition of sodium orthovanadate (Na3VO4) in a MnMgZn phosphate bath leads to a ...
    View more >
    The transport of CO2 rich fluids via steel pipelines in the CO2 capture and storage (CCS) process requires a strategy for internal corrosion protection in cases where the stream is acidic and hence corrosive due to the formation of carbonic acid. Such protection strategies have been scarcely studied and will need significant research. In this study, one possibility to protect the steel pipelines from internal corrosion during CO2 transport is presented based on treatment of the internal surface with a vanadate-based MnMgZn phosphate coating. The addition of sodium orthovanadate (Na3VO4) in a MnMgZn phosphate bath leads to a significant change in the microstructure of the phosphate coating, which will alter corrosion behaviour significantly. Herein, the effect of vanadate concentration (0.0625, 0.125, 0.25 mM) in the phosphate bath is studied with respect to the resultant microstructure and corrosion behaviour of the phosphate coatings. Electrochemical studies such as polarization curves and electrochemical impedance spectroscopy (EIS) were performed in diluted HCl solution at pHs 2–4 to investigate the corrosion behaviour and distinguish the dielectric and electric properties of the phosphate coating.
    View less >
    Journal Title
    Surface and Coatings Technology
    Volume
    210
    DOI
    https://doi.org/10.1016/j.surfcoat.2012.09.018
    Subject
    Condensed matter physics
    Physical chemistry
    Materials engineering
    Materials engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/173766
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander