• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Direct Photochemical Functionalization of Si(111) with Undecenol

    Author(s)
    Zhong, Yu Lin
    Bernasek, Steven L
    Griffith University Author(s)
    Zhong, Yulin
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    Direct UV photochemical functionalization of H-terminated Si(111) with bifunctional 10-undecen-1-ol was achieved with selective attachment via its vinyl end, resulting in the formation of a compact monolayer with free terminal alcohol groups. This is due to the faster radical propagation mechanism in hydrosilylation with alkene compared to the nucleophilic attack mechanism of alcohol, which is impeded by intermolecular hydrogen bonding present at room temperature. Evidence from X-ray photoelectron spectroscopy, infrared spectroscopy, and resistance to fluoride etching shows that Si−C is the interfacial bond, and atomic force ...
    View more >
    Direct UV photochemical functionalization of H-terminated Si(111) with bifunctional 10-undecen-1-ol was achieved with selective attachment via its vinyl end, resulting in the formation of a compact monolayer with free terminal alcohol groups. This is due to the faster radical propagation mechanism in hydrosilylation with alkene compared to the nucleophilic attack mechanism of alcohol, which is impeded by intermolecular hydrogen bonding present at room temperature. Evidence from X-ray photoelectron spectroscopy, infrared spectroscopy, and resistance to fluoride etching shows that Si−C is the interfacial bond, and atomic force microscopy shows the presence of a smooth, uniform monolayer conforming to the atomic terraces of the Si(111) surface. The application of such a hydroxyl-terminated monolayer was demonstrated by tethering a bromoinitiator through surface esterification and thereafter subjecting the surface to the surface-initiated atom-transfer radical polymerization of butyl methacrylate. The poly(butyl methacrylate) brushes formed were found to be smooth (Ra < 0.3 nm) and uniform even for a thin film of 4.0 nm.
    View less >
    Journal Title
    Langmuir
    Volume
    27
    Issue
    5
    DOI
    https://doi.org/10.1021/la104143r
    Subject
    Functional materials
    Publication URI
    http://hdl.handle.net/10072/173795
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander