• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effect of speech and noise cross correlation on AMFCC speech recognition features

    Thumbnail
    View/Open
    48085_1.pdf (209.0Kb)
    Author(s)
    Shannon, Benjamin J
    Paliwal, Kuldip K
    Griffith University Author(s)
    Paliwal, Kuldip K.
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    When designing noise robust speech recognition feature extraction algorithms, it is common to assume that the noise and speech signal are uncorrelated. This assumption allows the cross correlation terms to be ignored in the equations that describe the operation of these algorithms, thus making the mathematics more tractable. In this paper, we investigate the validity of this assumption in the context of the Autocorrelation Mel Frequency Cepstral Coefficient (AMFCC) feature extraction algorithm. To carry out the investigation, we designed a modified AMFCC algorithm that forces the cross terms in the noisy signal autocorrelation ...
    View more >
    When designing noise robust speech recognition feature extraction algorithms, it is common to assume that the noise and speech signal are uncorrelated. This assumption allows the cross correlation terms to be ignored in the equations that describe the operation of these algorithms, thus making the mathematics more tractable. In this paper, we investigate the validity of this assumption in the context of the Autocorrelation Mel Frequency Cepstral Coefficient (AMFCC) feature extraction algorithm. To carry out the investigation, we designed a modified AMFCC algorithm that forces the cross terms in the noisy signal autocorrelation equation to be zero. We then compared the performance of the modified algorithm to the un-modified algorithm in recognition experiments performed using the AURORA II database. From these evaluations, we show that the assumption is fair in 5 out of six tested noise cases. The difference in recognition accuracy between the AMFCC and modified AMFCC for these five noises was less than 5%.
    View less >
    Conference Title
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PTS 1-3
    Volume
    4
    Publisher URI
    http://ieeexplore.ieee.org/servlet/opac?punumber=4216989
    DOI
    https://doi.org/10.1109/ICASSP.2007.367249
    Copyright Statement
    © 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
    Publication URI
    http://hdl.handle.net/10072/17393
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander