• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Genetic modulation of adenosine receptor function and adenosine handling in murine hearts: insights and issues

    Author(s)
    Ashton, Kevin J
    Peart, Jason N
    Morrison, R Ray
    Matherne, G Paul
    Blackburn, Michael R
    Headrick, John P
    Griffith University Author(s)
    Headrick, John P.
    Peart, Jason N.
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    The adenosine receptor system has been attributed with a broad range of both physiological and so-called 'retaliatory' functions in the heart and vessels. Despite many years of research, the precise roles of adenosine within the cardiovascular system continue to be debated, and new functions are continually emerging. Adenosine acts via 4 known G-protein-coupled receptor (GPCR) sub-types: A1, A2A, A2B, and A3 adenosine receptors (ARs). In addition to roles in cardiovascular control, these receptors may represent therapeutic targets, having been attributed with roles in modifying cell death and injury, inflammatory processes, ...
    View more >
    The adenosine receptor system has been attributed with a broad range of both physiological and so-called 'retaliatory' functions in the heart and vessels. Despite many years of research, the precise roles of adenosine within the cardiovascular system continue to be debated, and new functions are continually emerging. Adenosine acts via 4 known G-protein-coupled receptor (GPCR) sub-types: A1, A2A, A2B, and A3 adenosine receptors (ARs). In addition to roles in cardiovascular control, these receptors may represent therapeutic targets, having been attributed with roles in modifying cell death and injury, inflammatory processes, and cardiac and vascular remodeling during/after ischemic or hypoxic insult. A number of models have been developed in which AR sub-types and adenosine handling enzymes have been genetically deleted or transgenically overexpressed in an attempt to more equivocally identify the regulatory functions of these proteins, to identify their potential value as therapeutic targets, and to uncover new regulatory functions of this receptor family. Findings generally support current dogma regarding cardioprotection via A1 and A3ARs, and coronary vasoregulation via A2AR sub-types. However, some outcomes are both novel and controversial. This review outlines AR-modified murine models currently under study from the perspective of cardiovascular phenotype.
    View less >
    Journal Title
    Journal of Molecular and Cellular Cardiology
    Volume
    42
    Issue
    4
    DOI
    https://doi.org/10.1016/j.yjmcc.2006.12.012
    Subject
    Cardiovascular medicine and haematology
    Medical physiology
    Publication URI
    http://hdl.handle.net/10072/17421
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander