• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A Comparison of Neural-based Techniques Investigating Rotational Invariance for Upright People Detection in Low Resolution Imagery

    Author(s)
    Green, Steven
    Blumenstein, Michael
    Griffith University Author(s)
    Blumenstein, Michael M.
    Green, Steven
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    This paper describes a neural-based technique for detecting upright persons in low-resolution beach imagery in order to predict trends of tourist activities at beach sites. The proposed system uses a structural feature extraction technique to represent objects of interest for training a selection of neural classifiers. A number of neural-based classifiers are compared in this study and a direction-based feature extraction technique is investigated in conjunction with a rotationally invariant procedure for the purpose of beach object classification. Encouraging results are presented for person detection using video ...
    View more >
    This paper describes a neural-based technique for detecting upright persons in low-resolution beach imagery in order to predict trends of tourist activities at beach sites. The proposed system uses a structural feature extraction technique to represent objects of interest for training a selection of neural classifiers. A number of neural-based classifiers are compared in this study and a direction-based feature extraction technique is investigated in conjunction with a rotationally invariant procedure for the purpose of beach object classification. Encouraging results are presented for person detection using video imagery collected from a beach site on the coast of Australia.
    View less >
    Conference Title
    AI 2007: Advances in Artificial intelligence : 20th Australian Joint Conference on Artificial Intelligence : Gold Coast, Australia, December 2007 : Proceedings
    Publisher URI
    http://www.springer.com/computer/artificial/book/978-3-540-76926-2
    http://www.cit.gu.edu.au/conferences/austai/
    Publication URI
    http://hdl.handle.net/10072/17594
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander