• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Identification of Protein Fold Topology Shared between Different Folds Inhibited by Natural Products

    Author(s)
    McArdle, Bernadette M
    Quinn, Ronald J
    Griffith University Author(s)
    Quinn, Ronald J.
    McArdle, Bernadette M.
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    Natural products have withstood the test of time as therapeutics, but new lead-generation strategies have focussed away from natural products. A new approach that uses natural-product recognition to drive an understanding of biological space might provide an impetus for renewed focus on natural-product starting points. Protein fold topology (PFT) has been shown to be an underlying factor for natural-product recognition. An investigation of natural product inhibitors of the Zincin-like fold has demonstrated their capacity also to inhibit targets of different fold types. Analysis of crystal structure complexes for natural ...
    View more >
    Natural products have withstood the test of time as therapeutics, but new lead-generation strategies have focussed away from natural products. A new approach that uses natural-product recognition to drive an understanding of biological space might provide an impetus for renewed focus on natural-product starting points. Protein fold topology (PFT) has been shown to be an underlying factor for natural-product recognition. An investigation of natural product inhibitors of the Zincin-like fold has demonstrated their capacity also to inhibit targets of different fold types. Analysis of crystal structure complexes for natural products cocrystallised within different fold types has shown similarity at the PFT level. Two new PFTT (where subscript T denotes PFT shared between therapeutic targets) relationships have been established: the Zincin-like- metallohydrolase/oxidoreductase PFTT and the Zincin-like-phosphorylase/hydrolase PFTT. The PFT relationship between a natural product's biosynthetic enzyme and therapeutic target, and now between different fold targets of the same natural product, suggests that PFT is the simplest descriptor of biological space. This fundamental factor for recognition could facilitate a rational approach to drug development guided by natural products.
    View less >
    Journal Title
    ChemBioChem
    Volume
    8
    Issue
    7
    Publisher URI
    http://www3.interscience.wiley.com/journal/72510898/home
    DOI
    https://doi.org/10.1002/cbic.200700035
    Copyright Statement
    Self-archiving of the author-manuscript version is not yet supported by this publisher. Please refer to the journal link for access to the definitive, published version or contact the author for more information.
    Subject
    Medicinal and Biomolecular Chemistry
    Biochemistry and Cell Biology
    Publication URI
    http://hdl.handle.net/10072/17795
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander