• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Robust speech recognition using features based on zero crossings with peak amplitudes

    Thumbnail
    View/Open
    23449.pdf (297.7Kb)
    Author(s)
    Gajic, B
    Paliwal, KK
    Griffith University Author(s)
    Paliwal, Kuldip K.
    Year published
    2003
    Metadata
    Show full item record
    Abstract
    The paper presents an extensive study of zero crossings with peak amplitudes (ZCPA) features, that have earlier been shown to outperform both conventional and auditory-based features in the presence of additive noise. The study starts by optimizing different parameters involved in ZCPA feature computation, followed by a comparison of ZCPA and MFCC features on two recognition tasks in different background conditions. The main differences between the two feature types are identified, and their individual effects on ASR performance are evaluated. The importance of a proper choice of analysis frame lengths and filter bandwidths ...
    View more >
    The paper presents an extensive study of zero crossings with peak amplitudes (ZCPA) features, that have earlier been shown to outperform both conventional and auditory-based features in the presence of additive noise. The study starts by optimizing different parameters involved in ZCPA feature computation, followed by a comparison of ZCPA and MFCC features on two recognition tasks in different background conditions. The main differences between the two feature types are identified, and their individual effects on ASR performance are evaluated. The importance of a proper choice of analysis frame lengths and filter bandwidths in ZCPA feature extraction is demonstrated. Furthermore, the use of dominant frequency information in ZCPA features is found to be a major reason for increased robustness of ZCPA features compared to MFCC features.
    View less >
    Conference Title
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PROCEEDINGS
    Volume
    1
    Publisher URI
    http://ieeexplore.ieee.org/servlet/opac?punumber=8535
    DOI
    https://doi.org/10.1109/ICASSP.2003.1198717
    Copyright Statement
    © 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
    Publication URI
    http://hdl.handle.net/10072/1784
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander