• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Statistical detection of short periodic gene expression time series profiles

    Thumbnail
    View/Open
    49698_1.pdf (402.1Kb)
    Author(s)
    Liew, Alan Wee-Chung
    Law, NF
    Yan, Hong
    Griffith University Author(s)
    Liew, Alan Wee-Chung
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    Many cellular processes exhibit periodic behaviors. Hence, one of the important tasks in gene expression data analysis is to detect subset of genes that exhibit cyclicity or periodicity in their gene expression time series profiles. Unfortunately, gene expression time series profiles are usually of very short length and highly contaminated with noise. This makes detection of periodic profiles a very difficult problem. Recently, a hypothesis testing method based on the Fisher g-statistic with correction for multiple testing has been proposed to detect periodic gene expression profiles. However, it was observed that the test ...
    View more >
    Many cellular processes exhibit periodic behaviors. Hence, one of the important tasks in gene expression data analysis is to detect subset of genes that exhibit cyclicity or periodicity in their gene expression time series profiles. Unfortunately, gene expression time series profiles are usually of very short length and highly contaminated with noise. This makes detection of periodic profiles a very difficult problem. Recently, a hypothesis testing method based on the Fisher g-statistic with correction for multiple testing has been proposed to detect periodic gene expression profiles. However, it was observed that the test is not reliable if the signal length is too short. In this paper, we performed extensive simulation study to investigate the statistical power of the test as a function of signal length, SNR, and the false discovery rate. We found that the number of periodic profiles can be severely underestimated for short length signal. The findings indicated that caution needs to be exercised when interpreting the test result for very short length signals.
    View less >
    Conference Title
    COMPUTATIONAL MODELS FOR LIFE SCIENCES (CMLS 07)
    Volume
    952
    Publisher URI
    https://www.aip.org/
    DOI
    https://doi.org/10.1063/1.2816619
    Copyright Statement
    © 2007 American Institute of Physics. The attached file is reproduced here in accordance with the copyright policy of the publisher. Use hypertext link for access to the conference website.
    Publication URI
    http://hdl.handle.net/10072/18030
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander