• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Growth and Nitridation of Silicon-dioxide Films on Silicon-carbide

    Author(s)
    Sweatman, D.
    Dimitrijev, S.
    Li, H. F.
    Tanner, P.
    Harrison, H. B.
    Griffith University Author(s)
    Harrison, Barry B.
    Dimitrijev, Sima
    Sweatman, Denis R.
    Tanner, Philip G.
    Li, Hui-feng
    Year published
    1997
    Metadata
    Show full item record
    Abstract
    Silicon-carbide offers great potential as a wide bandgap semiconductor for electronic applications. A good quality oxide dielectric will allow MOS device fabrication and in particular N-channel mosfets for their higher electron mobility. To date oxides on N-type silicon-carbide (nitrogen doped) have exhibited excellent characteristics while on P-type (aluminium or boron doped) the characteristics are poor. This paper presents results for the oxidation and subsequent nitridation of N and P-type silicon-carbide. It illustrates the role that nitrogen at the interface has in improving the trap densities and that nitric oxide ...
    View more >
    Silicon-carbide offers great potential as a wide bandgap semiconductor for electronic applications. A good quality oxide dielectric will allow MOS device fabrication and in particular N-channel mosfets for their higher electron mobility. To date oxides on N-type silicon-carbide (nitrogen doped) have exhibited excellent characteristics while on P-type (aluminium or boron doped) the characteristics are poor. This paper presents results for the oxidation and subsequent nitridation of N and P-type silicon-carbide. It illustrates the role that nitrogen at the interface has in improving the trap densities and that nitric oxide provides the nitrogen well. Nitrous oxide, previously used to nitride silicon dioxide on silicon, is shown to substantially deteriorate the interface density of states for both N and P-type substrates.
    View less >
    Conference Title
    RAPID THERMAL and INTEGRATED PROCESSING VI
    Volume
    470
    DOI
    https://doi.org/10.1557/PROC-470-413
    Publication URI
    http://hdl.handle.net/10072/180795
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander