Growth and Nitridation of Silicon-dioxide Films on Silicon-carbide
Author(s)
Sweatman, D.
Dimitrijev, S.
Li, H. F.
Tanner, P.
Harrison, H. B.
Griffith University Author(s)
Year published
1997
Metadata
Show full item recordAbstract
Silicon-carbide offers great potential as a wide bandgap semiconductor for electronic applications. A good quality oxide dielectric will allow MOS device fabrication and in particular N-channel mosfets for their higher electron mobility. To date oxides on N-type silicon-carbide (nitrogen doped) have exhibited excellent characteristics while on P-type (aluminium or boron doped) the characteristics are poor. This paper presents results for the oxidation and subsequent nitridation of N and P-type silicon-carbide. It illustrates the role that nitrogen at the interface has in improving the trap densities and that nitric oxide ...
View more >Silicon-carbide offers great potential as a wide bandgap semiconductor for electronic applications. A good quality oxide dielectric will allow MOS device fabrication and in particular N-channel mosfets for their higher electron mobility. To date oxides on N-type silicon-carbide (nitrogen doped) have exhibited excellent characteristics while on P-type (aluminium or boron doped) the characteristics are poor. This paper presents results for the oxidation and subsequent nitridation of N and P-type silicon-carbide. It illustrates the role that nitrogen at the interface has in improving the trap densities and that nitric oxide provides the nitrogen well. Nitrous oxide, previously used to nitride silicon dioxide on silicon, is shown to substantially deteriorate the interface density of states for both N and P-type substrates.
View less >
View more >Silicon-carbide offers great potential as a wide bandgap semiconductor for electronic applications. A good quality oxide dielectric will allow MOS device fabrication and in particular N-channel mosfets for their higher electron mobility. To date oxides on N-type silicon-carbide (nitrogen doped) have exhibited excellent characteristics while on P-type (aluminium or boron doped) the characteristics are poor. This paper presents results for the oxidation and subsequent nitridation of N and P-type silicon-carbide. It illustrates the role that nitrogen at the interface has in improving the trap densities and that nitric oxide provides the nitrogen well. Nitrous oxide, previously used to nitride silicon dioxide on silicon, is shown to substantially deteriorate the interface density of states for both N and P-type substrates.
View less >
Conference Title
RAPID THERMAL and INTEGRATED PROCESSING VI
Volume
470