Weighted complex projective 2-designs from bases: optimal state determination by orthogonal measurements

View/ Open
Author(s)
Roy, Aidan
Scott, Andrew
Griffith University Author(s)
Year published
2007
Metadata
Show full item recordAbstract
We introduce the problem of constructing weighted complex projective 2-designs from the union of a family of orthonormal bases. If the weight remains constant across elements of the same basis, then such designs can be interpreted as generalizations of complete sets of mutually unbiased bases, being equivalent whenever the design is composed of d+1 bases in dimension d. We show that, for the purpose of quantum state determination, these designs specify an optimal collection of orthogonal measurements. Using highly nonlinear functions on Abelian groups, we construct explicit examples from d+2 orthonormal bases whenever d+1 ...
View more >We introduce the problem of constructing weighted complex projective 2-designs from the union of a family of orthonormal bases. If the weight remains constant across elements of the same basis, then such designs can be interpreted as generalizations of complete sets of mutually unbiased bases, being equivalent whenever the design is composed of d+1 bases in dimension d. We show that, for the purpose of quantum state determination, these designs specify an optimal collection of orthogonal measurements. Using highly nonlinear functions on Abelian groups, we construct explicit examples from d+2 orthonormal bases whenever d+1 is a prime power, covering dimensions d=6, 10, and 12, for example, where no complete sets of mutually unbiased bases have thus far been found.
View less >
View more >We introduce the problem of constructing weighted complex projective 2-designs from the union of a family of orthonormal bases. If the weight remains constant across elements of the same basis, then such designs can be interpreted as generalizations of complete sets of mutually unbiased bases, being equivalent whenever the design is composed of d+1 bases in dimension d. We show that, for the purpose of quantum state determination, these designs specify an optimal collection of orthogonal measurements. Using highly nonlinear functions on Abelian groups, we construct explicit examples from d+2 orthonormal bases whenever d+1 is a prime power, covering dimensions d=6, 10, and 12, for example, where no complete sets of mutually unbiased bases have thus far been found.
View less >
Journal Title
Journal of Mathematical Physics
Volume
48
Issue
7
Copyright Statement
© 2007 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Mathematical Physics, Vol. 48(7), pp. 072110-1-072110-24 and may be found at http://dx.doi.org/10.1063/1.2748617
Subject
Mathematical Sciences
Physical Sciences