• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Analysing the sensivity behaviour of two hydrology models

    Author(s)
    Matthews, Chris J
    Newton, David B
    Braddock, Roger D
    Yu, Bofu
    Griffith University Author(s)
    Braddock, Roger D.
    Matthews, Christopher J.
    Yu, Bofu
    Newton, David B.
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    Recently, the New Morris Method has been presented as an effective sensitivity analysis tool for mathematical models. The New Morris Method estimates the sensitivity of an output parameter to a given set of input parameters (first-order effects) and the extent these parameters interact with each other (second-order effects). This method requires the specification of two parameters (runs and resolution) that control the sampling of the output parameter to determine its sensitivity to various inputs. The criteria for these parameters have been set on the analysis of a well-behaved analytical function (see Cropp and Braddock, ...
    View more >
    Recently, the New Morris Method has been presented as an effective sensitivity analysis tool for mathematical models. The New Morris Method estimates the sensitivity of an output parameter to a given set of input parameters (first-order effects) and the extent these parameters interact with each other (second-order effects). This method requires the specification of two parameters (runs and resolution) that control the sampling of the output parameter to determine its sensitivity to various inputs. The criteria for these parameters have been set on the analysis of a well-behaved analytical function (see Cropp and Braddock, Reliab. Eng. Syst. Saf. 78:77-83, 2002), which may not be applicable to other physical models that describe complex processes. This paper will investigate the appropriateness of the criteria from (Cropp and Braddock, 2002) and hence the effectiveness of the New Morris Method to determine the sensitivity behaviour of two hydrologic models: the Soil Erosion and Deposition System and Griffith University Representation of Urban Hydrology. In the first case, this paper will separately analyse the sensitivity of an output parameter on a set of input parameters (first- and second-order effects) for each model and discuss the physical meaning of these sensitivities. This will be followed by an investigation into the sampling criteria by exploring the convergence of the sensitivity behaviour for each model as the sampling of the parameter space is increased. By comparing these trends to the convergence behaviour from Cropp and Braddock (2002), we will determine how well the New Morris Method estimates the sensitivity for each model and whether the sampling criteria are appropriate for these models. It will be shown that the New Morris Method can provide additional insight into the functioning of these models, and that, under a different metric, the sensitivity behaviour of these models does converge confirming the sampling criteria set by Cropp and Braddock.
    View less >
    Journal Title
    Environmental Modeling and Assessment
    Volume
    12
    Issue
    1
    DOI
    https://doi.org/10.1007/s10666-006-9049-3
    Publication URI
    http://hdl.handle.net/10072/18272
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander