• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Approximating the maximum vertex/edge weighted clique using local search

    Author(s)
    Pullan, W
    Griffith University Author(s)
    Pullan, Wayne J.
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    This paper extends the recently introduced Phased Local Search (PLS) algorithm to more difficult maximum clique problems and also adapts the algorithm to handle maximum vertex/edge weighted clique instances. PLS is a stochastic reactive dynamic local search algorithm that interleaves sub-algorithms which alternate between sequences of iterative improvement, during which suitable vertices are added to the current sub-graph, and plateau search, where vertices of the current sub-graph are swapped with vertices not contained in the current sub-graph. These sub-algorithms differ in firstly their vertex selection techniques in ...
    View more >
    This paper extends the recently introduced Phased Local Search (PLS) algorithm to more difficult maximum clique problems and also adapts the algorithm to handle maximum vertex/edge weighted clique instances. PLS is a stochastic reactive dynamic local search algorithm that interleaves sub-algorithms which alternate between sequences of iterative improvement, during which suitable vertices are added to the current sub-graph, and plateau search, where vertices of the current sub-graph are swapped with vertices not contained in the current sub-graph. These sub-algorithms differ in firstly their vertex selection techniques in that selection can be solely based on randomly selecting a vertex, randomly selecting within highest vertex degree, or random selecting within vertex penalties that are dynamically adjusted during the search. Secondly, the perturbation mechanism used to overcome search stagnation differs between the sub-algorithms. PLS has no problem instance dependent parameters and achieves state-of-the-art performance for maximum clique and maximum vertex/edge weighted clique problems over a large range of the commonly used DIMACS benchmark instances.
    View less >
    Journal Title
    Journal of Heuristics
    Volume
    14
    Issue
    2
    DOI
    https://doi.org/10.1007/s10732-007-9026-2
    Subject
    Applied mathematics
    Theory of computation
    Publication URI
    http://hdl.handle.net/10072/18582
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander