• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Short-crested wave interaction with a concentric porous cylindrical structure

    Thumbnail
    View/Open
    50213_1.pdf (987.7Kb)
    Author(s)
    Song, Hao
    Tao, Longbin
    Griffith University Author(s)
    Tao, Longbin
    Song, Hao
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    In this paper, theoretical study is carried out to investigate the general 3D short-crested wave interaction with a concentric two-cylinder system. The interior cylinder is impermeable and the exterior cylinder is thin in thickness and porous to protect the interior cylinder. Both cylinders are surface-piercing and bottom mounted. Analytical solution is derived based on the linear potential theory. The effects of the wide range wave parameters and structure configuration including porosity of the exterior cylinder and the annular spacing on the wave forces, surface elevations and the diffracted wave contours are examined.In this paper, theoretical study is carried out to investigate the general 3D short-crested wave interaction with a concentric two-cylinder system. The interior cylinder is impermeable and the exterior cylinder is thin in thickness and porous to protect the interior cylinder. Both cylinders are surface-piercing and bottom mounted. Analytical solution is derived based on the linear potential theory. The effects of the wide range wave parameters and structure configuration including porosity of the exterior cylinder and the annular spacing on the wave forces, surface elevations and the diffracted wave contours are examined.
    View less >
    Journal Title
    Applied Ocean Research
    Volume
    29
    Issue
    4
    DOI
    https://doi.org/10.1016/j.apor.2008.01.001
    Copyright Statement
    © 2007 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Oceanography
    Civil engineering
    Resources engineering and extractive metallurgy
    Publication URI
    http://hdl.handle.net/10072/18869
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander