• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Wyman's Equation and Oxygen Flux through the Red Cell

    Author(s)
    McCabe, Michael
    Maguire, David
    Griffith University Author(s)
    Maguire, David J.
    McCabe, Michael
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    Wyman's equation of 1966 1 describes the facilitation of flux of a reversibly bound substrate such as oxygen, consequent on the translational diffusion of the binding protein (the carrier). While Wyman's equation 1, or some modification of it such as that by Murray 2, may provide a realistic description of the flux of oxygen through a dilute solution of haemoglobin (see also Wittenburg 3, 4), it is unlikely to be the complete explanation, nor even the basis, for oxygen transport through the intact red cell. The mature erythrocyte contains approximately 350g/l haemoglobin, and while this suggests that only 35% of the available ...
    View more >
    Wyman's equation of 1966 1 describes the facilitation of flux of a reversibly bound substrate such as oxygen, consequent on the translational diffusion of the binding protein (the carrier). While Wyman's equation 1, or some modification of it such as that by Murray 2, may provide a realistic description of the flux of oxygen through a dilute solution of haemoglobin (see also Wittenburg 3, 4), it is unlikely to be the complete explanation, nor even the basis, for oxygen transport through the intact red cell. The mature erythrocyte contains approximately 350g/l haemoglobin, and while this suggests that only 35% of the available water volume is actually occupied by the protein, the remaining 65% is unavailable for protein translational diffusion due to the mutual exclusion of the haemoglobin molecules. For this reason we have examined other possible mechanisms whereby haemoglobin may facilitate the translational diffusion of oxygen within the erythrocyte. Possible alternatives include rotational diffusion by the haemoglobins, intracellular shuffling of haemoglobins due to shape changes by the erythrocyte, and haemoglobin rotations and oxygen exchange consequent on the charge change which accompanies substration and desubstration of the haemoglobin molecule. Finally the dipole interactions are shown to generate significant intermolecular attractions between adjacent haemoglobins.
    View less >
    Journal Title
    Advances in Experimental Medicine and Biology
    Volume
    599
    Publisher URI
    http://dx.doi.org/10.1007/978-0-387-71764-7
    DOI
    https://doi.org/10.1007/978-0-387-71764-7_12
    Subject
    Medical and Health Sciences
    Publication URI
    http://hdl.handle.net/10072/19101
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander