• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Interrill soil erosion processes and their interaction on low slopes

    Author
    Asadi, Hossein
    Ghadiri, Hossein
    Rose, Calvin
    Rouhipour, H.
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    Soil erosion by water is mostly the result of rainfall-driven and runoff-driven processes taking place simultaneously during a storm event. However, the effect of interaction between these two erosion processes has received limited attention. Most laboratory experiments indicate that the rate of erosion in a rain-impacted flow is greater than for un-impacted flows of similar depth and velocity, however negative interaction between the two processes has also been reported. There is no provision for any such interaction in any of the current erosion models. This paper reports on the results of a number of exact experiments on three soil types carried out in the flume of Griffith University's large Rainfall simulator to study interaction between rain and runoff processes. The results show that interaction is generally positive under approximately steady state condition and there is very limited sign of negative interaction reported by others. Results provide strong evidence that raindrops continuously peel fine sediment from larger stable aggregates. This mechanism could be the reason for positive interaction during simultaneous rainfall and flow driven erosion in well aggregated soils as a result of increased fine particles in the eroded sediment. Strong positive interaction between rain and runoff erosion also occurs for medium to large aggregates. This strongly suggests that mechanisms which are not well understood are operational. It is quite possible that particle movement can be stimulated by rolling or creeping in a size-selective manner. Indeed, such additional mechanisms may well be largely responsible for the positive interaction observed between rain and surface flow.
    Journal Title
    Earth Surface Processes and Landforms
    Volume
    32
    Issue
    5
    Publisher URI
    http://www3.interscience.wiley.com/journal/117935722/grouphome/home.html
    DOI
    https://doi.org/10.1002/esp.1426
    Copyright Statement
    © 2007 John Wiley & Sons, Ltd. Self-archiving of the author-manuscript version is not yet supported by this publisher. Please refer to the journal link for access to the definitive, published version or contact the author for more information.
    Publication URI
    http://hdl.handle.net/10072/19242
    Collection
    • Journal articles

    Footer

    Social media

    • Facebook
    • Twitter
    • YouTube
    • Instagram
    • Linkedin
    First peoples of Australia
    • Aboriginal
    • Torres Strait Islander

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane
    • Australia