• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Book chapters
    • View Item
    • Home
    • Griffith Research Online
    • Book chapters
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Transcriptional regulatory networks in macrophages

    Author(s)
    A. Hume, David
    Wells, Christine
    Ravasi, Timothy
    Griffith University Author(s)
    Wells, Christine
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    The functions of macrophages in the innate immune system require the constitutive expression of a wide range of myeloid-specific genes, including various pattern recognition receptors, as well as the inducible expression of a suite of genes required to initiate inflammation and eliminate pathogens. Our overall aim is to understand the transcriptional networks that underlie both macrophage-specific transcription and the response to pathogen components such as lipopolysaccharide (LPS). The approaches used include detailed functional analysis of specific promoters, such as that of the CSF1 receptor, global cDNA microarray ...
    View more >
    The functions of macrophages in the innate immune system require the constitutive expression of a wide range of myeloid-specific genes, including various pattern recognition receptors, as well as the inducible expression of a suite of genes required to initiate inflammation and eliminate pathogens. Our overall aim is to understand the transcriptional networks that underlie both macrophage-specific transcription and the response to pathogen components such as lipopolysaccharide (LPS). The approaches used include detailed functional analysis of specific promoters, such as that of the CSF1 receptor, global cDNA microarray expression profiling, high throughput real-time PCR analysis of all the transcription factors encoded by the mammalian genome, full length cDNA library construction and sequencing, CAGE analysis to identify specific promoters used in macrophages and motif analysis to detect candidate cis-acting elements in co-regulated genes in macrophages. This review discusses some of the progress in moving towards a transcriptional network model for mouse macrophage activation by LPS, as well as insight into the role of alternative promoter usage and polyadenylation in generating functional protein variants that impact on signalling in macrophages.
    View less >
    Book Title
    Decoding the Genomic Control of Immune Reactions
    Volume
    281
    Subject
    History and Archaeology
    Publication URI
    http://hdl.handle.net/10072/19636
    Collection
    • Book chapters

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander