• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Design of a Speech Recognition System Based on Acoustically Derived Segmental Units

    Thumbnail
    View/Open
    5306_1.pdf (472.0Kb)
    Author(s)
    Bacchiani, M
    Ostendorf, M
    Sagisaka, Y
    Paliwal, K
    Griffith University Author(s)
    Paliwal, Kuldip K.
    Year published
    1996
    Metadata
    Show full item record
    Abstract
    The design of speech recognition system based on acoustically- derived, segmental units can be divided in three steps: unit design, lexicon building and pronunciation modeling. We formulate an iterative unit design procedure which consistently uses a maximum likelihood (ML) objective in successive application of resegmentation and model re-estimation. The lexicon building allows multi-word entries in the lexicon but restricts the number of these entries in order to avoid a too costly search. Selected multi-word lexical entries are those with high frequency (such as function words) and those which consistently exhibit ...
    View more >
    The design of speech recognition system based on acoustically- derived, segmental units can be divided in three steps: unit design, lexicon building and pronunciation modeling. We formulate an iterative unit design procedure which consistently uses a maximum likelihood (ML) objective in successive application of resegmentation and model re-estimation. The lexicon building allows multi-word entries in the lexicon but restricts the number of these entries in order to avoid a too costly search. Selected multi-word lexical entries are those with high frequency (such as function words) and those which consistently exhibit cross-word phone assimilation. The stochastic pronunciation model represents the likelihood of a particular acoustic segment sequence given the phonetic baseform of a lexical item, where the sequence of baseform phones are treated as a Markov state sequence and each state can emit multiple segments.
    View less >
    Conference Title
    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
    Volume
    1
    DOI
    https://doi.org/10.1109/ICASSP.1996.541128
    Copyright Statement
    © 1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
    Subject
    Forestry sciences
    Publication URI
    http://hdl.handle.net/10072/19782
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander