Mangrove Production and Carbon sinks: A revision of global budget estimates

View/ Open
Author(s)
Bouillon, Steven
Borges, Alberto V
Castaneda-Moya, Edward
Diele, Karen
Dittmar, Thorsten
Duke, Norman C
Kristensen, Erik
Lee, Shing Y
Marchand, Cyril
Middelburg, Jack J
Rivera-Monroy, Victor H
Smith, Thomas J
Twilley, Robert R
Year published
2008
Metadata
Show full item recordAbstract
[1] Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ∼218 ± 72 Tg C a−1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon ...
View more >[1] Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ∼218 ± 72 Tg C a−1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at ∼112 ± 85 Tg C a−1, equivalent in magnitude to ∼30–40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far.
View less >
View more >[1] Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ∼218 ± 72 Tg C a−1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at ∼112 ± 85 Tg C a−1, equivalent in magnitude to ∼30–40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far.
View less >
Journal Title
Global Biogeochemical Cycles
Volume
22
Issue
GB2013
Publisher URI
Copyright Statement
© 2008 American Geophysical Union. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Atmospheric sciences
Geochemistry
Oceanography