• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Improved and automated prediction of effective siRNA.

    Author(s)
    M. Chalk, Alistair
    Wahlestedt, Claes
    L.L. Sonnhammer, Erik
    Griffith University Author(s)
    Chalk, Alistair M.
    Year published
    2004
    Metadata
    Show full item record
    Abstract
    Short interfering RNAs are used in functional genomics studies to knockdown a single gene in a reversible manner. The results of siRNA experiments are highly dependent on the choice of siRNA sequence. In order to evaluate siRNA design rules, we collected a database of 398 siRNAs of known efficacy from 92 genes. We used this database to evaluate previously proposed rules from smaller datasets, and to find a new set of rules that are optimal for the entire database. We also trained a regression tree with full cross-validation. It was however difficult to obtain the same precision as methods previously tested on small datasets ...
    View more >
    Short interfering RNAs are used in functional genomics studies to knockdown a single gene in a reversible manner. The results of siRNA experiments are highly dependent on the choice of siRNA sequence. In order to evaluate siRNA design rules, we collected a database of 398 siRNAs of known efficacy from 92 genes. We used this database to evaluate previously proposed rules from smaller datasets, and to find a new set of rules that are optimal for the entire database. We also trained a regression tree with full cross-validation. It was however difficult to obtain the same precision as methods previously tested on small datasets from one or two genes. We show that those methods are overfitting as they work poorly on independent validation datasets from multiple genes. Our new design rules can predict siRNAs with efficacy >/= 50% in 91% of cases, and with efficacy >/=90% in 52% of cases, which is more than a twofold improvement over random selection. Software for designing siRNAs is available online via a web server at or as a standalone version for high-throughput applications.
    View less >
    Journal Title
    Biochemical and Biophysical Research Communications
    Volume
    319
    Issue
    1
    Publisher URI
    http://www.elsevier.com/wps/find/journaldescription.cws_home/622790/description#description
    DOI
    https://doi.org/10.1016/j.bbrc.2004.04.181
    Subject
    Medicinal and Biomolecular Chemistry
    Biochemistry and Cell Biology
    Medical Biochemistry and Metabolomics
    Publication URI
    http://hdl.handle.net/10072/20943
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander