• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Symmetric informationally complete quantum measurements

    Thumbnail
    View/Open
    39874_1.pdf (156.9Kb)
    Author(s)
    M. Renes, Joseph
    Blume-Kohout, Robin
    Scott, A.
    M. Caves, Carlton
    Griffith University Author(s)
    Scott, Andrew J.
    Year published
    2004
    Metadata
    Show full item record
    Abstract
    We consider the existence in arbitrary finite dimensions d of a positive operator valued measure (POVM) comprised of d2 rank-one operators all of whose operator inner products are equal. Such a set is called a "symmetric, informationally complete" POVM (SIC-POVM) and is equivalent to a set of d2 equiangular lines in d. SIC-POVMs are relevant for quantum state tomography, quantum cryptography, and foundational issues in quantum mechanics. We construct SIC-POVMs in dimensions two, three, and four. We further conjecture that a particular kind of group-covariant SIC-POVM exists in arbitrary dimensions, providing numerical results ...
    View more >
    We consider the existence in arbitrary finite dimensions d of a positive operator valued measure (POVM) comprised of d2 rank-one operators all of whose operator inner products are equal. Such a set is called a "symmetric, informationally complete" POVM (SIC-POVM) and is equivalent to a set of d2 equiangular lines in d. SIC-POVMs are relevant for quantum state tomography, quantum cryptography, and foundational issues in quantum mechanics. We construct SIC-POVMs in dimensions two, three, and four. We further conjecture that a particular kind of group-covariant SIC-POVM exists in arbitrary dimensions, providing numerical results up to dimension 45 to bolster this claim.鲰04 American Institute of Physics.
    View less >
    Journal Title
    Journal of Mathematical Physics
    Volume
    45
    Issue
    6
    DOI
    https://doi.org/10.1063/1.1737053
    Copyright Statement
    © 2004 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Mathematical Physics, Vol. 45(6), pp. 2171-2180 and may be found at http://dx.doi.org/10.1063/1.1737053.
    Subject
    Mathematical Sciences
    Physical Sciences
    Publication URI
    http://hdl.handle.net/10072/21107
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander