• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Construction of recombinant S-layer proteins (rSbsA) and their expression in bacterial ghosts - a delivery system for the nontypeable Haemophilus influenzae antigen OMP26

    Author(s)
    Riedmann, EM
    Kyd, JM
    Smith, AM
    Gomez-Gallego, S
    Jalava, K
    Cripps, AW
    Lubitz, W
    Griffith University Author(s)
    Cripps, Allan W.
    Year published
    2003
    Metadata
    Show full item record
    Abstract
    This study has investigated the feasibility of a combination of recombinant surface layer (S-layer) proteins and empty bacterial cell envelopes (ghosts) to deliver candidate antigens for a vaccine against nontypeable Haemophilus influenzae (NTHi) infections. The S-layer gene sbsA from Bacillus stearothermophilus PV72 was used for the construction of fusion proteins. Fusion of maltose binding protein (MBP) to the N-terminus of SbsA allowed expression of the S-layer in the periplasm of Escherichia coli. The outer membrane protein (Omp) 26 of NTHi was inserted into the N-terminal and C-terminal regions of SbsA. The presence ...
    View more >
    This study has investigated the feasibility of a combination of recombinant surface layer (S-layer) proteins and empty bacterial cell envelopes (ghosts) to deliver candidate antigens for a vaccine against nontypeable Haemophilus influenzae (NTHi) infections. The S-layer gene sbsA from Bacillus stearothermophilus PV72 was used for the construction of fusion proteins. Fusion of maltose binding protein (MBP) to the N-terminus of SbsA allowed expression of the S-layer in the periplasm of Escherichia coli. The outer membrane protein (Omp) 26 of NTHi was inserted into the N-terminal and C-terminal regions of SbsA. The presence of the fused antigen Omp26 was demonstrated by Western blot experiments using anti-Omp26 antisera. Electron microscopy showed that the recombinant SbsA maintained the ability to self-assemble into sheet-like and cylindrical structures. Recombinant E. coli cell envelopes (ghosts) were produced by the expression of SbsA/Omp26 fusion proteins prior to gene E-mediated lysis. Intraperitoneal immunization with these recombinant bacterial ghosts induced an Omp26-specific antibody response in BALB/c mice. These results demonstrate that the NTHi antigen, Omp26, was expressed in the S-layer self-assembly product and this construct was immunogenic for Omp26 when administered to mice in bacterial cell envelopes.
    View less >
    Journal Title
    FEMS Immunology and Medical Microbiology
    Volume
    37
    Issue
    2-3
    Publisher URI
    https://www.wiley.com/en-au
    DOI
    https://doi.org/10.1016/S0928-8244(03)00070-1
    Subject
    Cardiovascular medicine and haematology
    Immunology
    Medical microbiology
    Publication URI
    http://hdl.handle.net/10072/21201
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander