• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • High Performance Liquid Chromatographic Separation And Identification Of A Toxic Fraction From Aloe Barbadensis Miller Leaf Gel Using The Artemia Nauplii Bioassay

    Thumbnail
    View/Open
    51820_1.pdf (191.4Kb)
    Author(s)
    Cock, Ian
    Ruebhart, David
    Griffith University Author(s)
    Cock, Ian E.
    Ruebhart, David R.
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    The current study was undertaken to detect toxicity in purified Aloe vera gel fractions using the Artemia nauplii lethality bioassay, thereby allowing for the identification of compounds of interest for further investigation. The work presented here therefore seeks to not only detect toxicity in gel extracts, but also to assign this toxicity to individual fractions. Methanol extraction and RP-HPLC were used to purify fractions from Aloe vera gel leading to the isolation of 13 major components. Of these 13 fractions tested using the Artemia nauplii lethality bioassay, one proved to be toxic with a 24 h LC50 of 435 姠mL-1. ...
    View more >
    The current study was undertaken to detect toxicity in purified Aloe vera gel fractions using the Artemia nauplii lethality bioassay, thereby allowing for the identification of compounds of interest for further investigation. The work presented here therefore seeks to not only detect toxicity in gel extracts, but also to assign this toxicity to individual fractions. Methanol extraction and RP-HPLC were used to purify fractions from Aloe vera gel leading to the isolation of 13 major components. Of these 13 fractions tested using the Artemia nauplii lethality bioassay, one proved to be toxic with a 24 h LC50 of 435 姠mL-1. Compared to the tested reference toxins, this Aloe vera gel fraction was approximately three times more toxic than the organophosphate insecticide Mevinphos (24 h LC50 1336 姠mL-1) and approximately six fold less toxic than potassium dichromate (LC50 73 姠mL-1). Of particular interest was the rapid onset of toxicity against the Artemia nauplii. Dilutions of the gel extract were capable of causing 100% mortality within 90 min. The isolated fraction induced 100% mortality within 120 min at a concentration of approximately 800 姠mL-1. In contrast, greater than 36 h was required for Mevinphos and 18 h for potassium dichromate to produce 100% mortality, even at high concentrations (2000 姠mL-1 or 800 姠mL-1 respectively). These results confirm the presence of toxic compounds in Aloe vera gel. As this bioassay correlates well with pesticidal activity and cytotoxic activity in some human tumors, this bioactive fraction may hold promise as a natural pesticide and/or antitumoral agent.
    View less >
    Journal Title
    The Internet Journal of Toxicology
    Volume
    4
    Issue
    2
    Publisher URI
    http://ispub.com/IJTO/4/2/12194
    Copyright Statement
    © 2008 Internet Scientific Publications. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
    Subject
    History and Archaeology
    Publication URI
    http://hdl.handle.net/10072/21476
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander