Remote control of restricted sets of operations: Teleportation of angles

View/ Open
Author(s)
Huelga, SF
Plenio, MB
Vaccaro, JA
Griffith University Author(s)
Year published
2002
Metadata
Show full item recordAbstract
We study the remote implementation of a unitary transformation on the state of a qubit. We show the existence of nontrivial protocols (i.e., using less resources than bidirectional state teleportation) that allow the perfect remote implementation of certain continuous sets of quantum operations. We prove that, up to a local change of basis, only two subsets exist that can be implemented remotely with a nontrivial protocol: Arbitrary rotations around a fixed direction n? and a p rotation about an arbitrary direction lying in a plane orthogonal to n?. The former operations effectively constitute the teleportation of arbitrary ...
View more >We study the remote implementation of a unitary transformation on the state of a qubit. We show the existence of nontrivial protocols (i.e., using less resources than bidirectional state teleportation) that allow the perfect remote implementation of certain continuous sets of quantum operations. We prove that, up to a local change of basis, only two subsets exist that can be implemented remotely with a nontrivial protocol: Arbitrary rotations around a fixed direction n? and a p rotation about an arbitrary direction lying in a plane orthogonal to n?. The former operations effectively constitute the teleportation of arbitrary angles. The overall classical information and distributed entanglement cost required for the remote implementation depends on whether it is known, a priori, in which of the two teleportable subsets the transformation belongs. If it is known, the optimal protocol consumes one e-bit of entanglement and one c-bit in each direction. If it is not known in which subset the transformation belongs, two e-bits of entanglement need to be consumed and the classical channel becomes asymmetric with two c-bits being conveyed from Alice to Bob but only one from Bob to Alice.
View less >
View more >We study the remote implementation of a unitary transformation on the state of a qubit. We show the existence of nontrivial protocols (i.e., using less resources than bidirectional state teleportation) that allow the perfect remote implementation of certain continuous sets of quantum operations. We prove that, up to a local change of basis, only two subsets exist that can be implemented remotely with a nontrivial protocol: Arbitrary rotations around a fixed direction n? and a p rotation about an arbitrary direction lying in a plane orthogonal to n?. The former operations effectively constitute the teleportation of arbitrary angles. The overall classical information and distributed entanglement cost required for the remote implementation depends on whether it is known, a priori, in which of the two teleportable subsets the transformation belongs. If it is known, the optimal protocol consumes one e-bit of entanglement and one c-bit in each direction. If it is not known in which subset the transformation belongs, two e-bits of entanglement need to be consumed and the classical channel becomes asymmetric with two c-bits being conveyed from Alice to Bob but only one from Bob to Alice.
View less >
Journal Title
Physical Review A (Atomic, Molecular and Optical Physics)
Volume
65
Issue
4
Publisher URI
Copyright Statement
© 2002 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal link for access to the definitive, published version.
Subject
Mathematical sciences
Physical sciences
Chemical sciences