• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Entanglement generation by Fock-state filtration

    Thumbnail
    View/Open
    51430_1.pdf (256.3Kb)
    Author(s)
    Resch, K.
    O'Brien, J.
    Weinhold, T.
    Sanaka, K.
    Lanyon, B.
    Langford, N.
    hite, A.
    Griffith University Author(s)
    Weinhold, Till
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    We demonstrate a Fock-state filter which is capable of preferentially blocking single photons over photon pairs. The large conditional nonlinearities are based on higher-order quantum interference, using linear optics, an ancilla photon, and measurement. We demonstrate that the filter acts coherently by using it to convert unentangled photon pairs to a path-entangled state. We quantify the degree of entanglement by transforming the path information to polarization information; applying quantum state tomography we measure a tangle of T=(20ṩ%.We demonstrate a Fock-state filter which is capable of preferentially blocking single photons over photon pairs. The large conditional nonlinearities are based on higher-order quantum interference, using linear optics, an ancilla photon, and measurement. We demonstrate that the filter acts coherently by using it to convert unentangled photon pairs to a path-entangled state. We quantify the degree of entanglement by transforming the path information to polarization information; applying quantum state tomography we measure a tangle of T=(20ṩ%.
    View less >
    Journal Title
    Physical Review Letters
    Volume
    98
    Issue
    20
    Publisher URI
    http://prl.aps.org/
    DOI
    https://doi.org/10.1103/PhysRevLett.98.203602
    Copyright Statement
    © 2007 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal link for access to the definitive, published version.
    Subject
    Mathematical Sciences
    Physical Sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/21607
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander