Use of PIT tag and underwater video recording in assessing estuarine fish movement in a high intertidal mangrove and salt marsh creek
Author(s)
Meynecke, Jan-Olaf
Poole, Geoffrey C
Werry, Jonathan
Lee, Shing Yip
Griffith University Author(s)
Year published
2008
Metadata
Show full item recordAbstract
We assessed movement patterns in relation to habitat availability (reflected by the extent of tidal flooding) for several commercially and recreationally important species in and out of a small mangrove creek within the subtropical Burrum River estuary (25'S 152'E) in Queensland, Australia. Movement patterns of Acanthopagrus australis, Pomadasys kaakan, Lutjanus russelli and Mugil cephalus were examined between December 2006 and April 2007 using a stationary passive integrated transponder (PIT) system adapted for saline environments (30-38 ppt) and underwater digital video cameras (DVCs). This is the second known application ...
View more >We assessed movement patterns in relation to habitat availability (reflected by the extent of tidal flooding) for several commercially and recreationally important species in and out of a small mangrove creek within the subtropical Burrum River estuary (25'S 152'E) in Queensland, Australia. Movement patterns of Acanthopagrus australis, Pomadasys kaakan, Lutjanus russelli and Mugil cephalus were examined between December 2006 and April 2007 using a stationary passive integrated transponder (PIT) system adapted for saline environments (30-38 ppt) and underwater digital video cameras (DVCs). This is the second known application of a stationary PIT tag system to studying fish movement in estuarine environments. The transponder system was set in place for 104 days and recorded >5000 detections. Overall 'recapture' rate of tagged fish by the transponder system was >40%. We used PIT tags implanted in a total of 75 fish from a tidal creek connected to the main channel of the estuary. We also developed a high-resolution digital elevation (2.5 m cell size) model of the estuary derived from airborne light detection and ranging (LIDAR) and aerial imagery to estimate inundation dynamics within the tidal creek, and related the timing of inundation in various habitats to the timing of fish immigration to and emigration from the creek. Over 50% of all tagged fish were moving in and out of the creek at a threshold level when 50% of the mangrove forest became flooded. Individuals of all four species moved into and out of the tidal creek repeatedly at different times depending on species and size, indicating strong residential behaviour within the estuary. The main activity of fishes was at night time. Manual interpretation of video from >700 fish sightings at three different mangrove sites confirmed the findings of the stationary PIT system, that the function of shelter vs food in mangrove habitat may be size dependent. Our established techniques assess the spatial ecology of estuarine fish and provide important insights into fish habitat utilisation and site fidelity behaviour.
View less >
View more >We assessed movement patterns in relation to habitat availability (reflected by the extent of tidal flooding) for several commercially and recreationally important species in and out of a small mangrove creek within the subtropical Burrum River estuary (25'S 152'E) in Queensland, Australia. Movement patterns of Acanthopagrus australis, Pomadasys kaakan, Lutjanus russelli and Mugil cephalus were examined between December 2006 and April 2007 using a stationary passive integrated transponder (PIT) system adapted for saline environments (30-38 ppt) and underwater digital video cameras (DVCs). This is the second known application of a stationary PIT tag system to studying fish movement in estuarine environments. The transponder system was set in place for 104 days and recorded >5000 detections. Overall 'recapture' rate of tagged fish by the transponder system was >40%. We used PIT tags implanted in a total of 75 fish from a tidal creek connected to the main channel of the estuary. We also developed a high-resolution digital elevation (2.5 m cell size) model of the estuary derived from airborne light detection and ranging (LIDAR) and aerial imagery to estimate inundation dynamics within the tidal creek, and related the timing of inundation in various habitats to the timing of fish immigration to and emigration from the creek. Over 50% of all tagged fish were moving in and out of the creek at a threshold level when 50% of the mangrove forest became flooded. Individuals of all four species moved into and out of the tidal creek repeatedly at different times depending on species and size, indicating strong residential behaviour within the estuary. The main activity of fishes was at night time. Manual interpretation of video from >700 fish sightings at three different mangrove sites confirmed the findings of the stationary PIT system, that the function of shelter vs food in mangrove habitat may be size dependent. Our established techniques assess the spatial ecology of estuarine fish and provide important insights into fish habitat utilisation and site fidelity behaviour.
View less >
Journal Title
Estuarine, Coastal and Shelf Science
Volume
79
Publisher URI
Subject
Earth Sciences
Environmental Sciences
Biological Sciences