Show simple item record

dc.contributor.authorWei, MQ
dc.contributor.authorRen, R
dc.contributor.authorGood, D
dc.contributor.authorAnné, J
dc.contributor.editorProfessor Shyam S Mohapatra
dc.date.accessioned2017-05-03T15:30:03Z
dc.date.available2017-05-03T15:30:03Z
dc.date.issued2008
dc.date.modified2009-03-13T09:01:02Z
dc.identifier.issn1479-0556
dc.identifier.doi10.1186/1479-0556-6-8
dc.identifier.urihttp://hdl.handle.net/10072/21704
dc.description.abstractSolid tumours account for 90% of all cancers. Gene therapy represents a potential new modality for their treatment. Up to now, several approaches have been developed, but the most efficient ones are the viral vector based gene therapy systems. However, viral vectors suffer from several deficiencies: firstly most vectors currently in use require intratumoural injection to elicit an effect. This is far from ideal as many tumours are inaccessible and many may have already spread to other parts of the body, making them difficult to locate and inject gene therapy vectors into. Second, because of cell heterogeneity within a given cancer, the vectors do not efficiently enter and kill every cancer cell. Third, hypoxia, a prevalent characteristic feature of most solid tumours, reduces the ability of the viral vectors to function and decreases viral gene expression and production. Consequently, a proportion of the tumour is left unaffected, from which tumour regrowth occurs. Thus, cancer gene therapy has yet to realise its full potential. The facultative or obligate anaerobic bacteria have been shown to selectively colonise and regerminate in solid tumours when delivered systemically. Among them, the clostridial spores were easy to produce, stable to store and safe to use as well as having extensive oncolytic ability. However, research in animals and humans has shown that oncolysis was almost always interrupted sharply at the outer rim of the viable tumour tissue where the blood supply was sufficient. These clostridial spores, though, could serve as "Trojan horse" for cancer gene therapy. Indeed, various spores harbouring genes for cancerstatic factors, prodrug enzymes, or proteins or cytokines had endowed with additional tumour-killing capability. Furthermore, combination of these "Trojan horses" with conventional chemotherapy or radiation therapies often significantly perform better, resulting in the "cure" of solid tumours in a high percentage of animals. It is, thus, not too difficult to predict the potential outcomes for the use of clostridial spores as "Trojan horse" vectors for oncolytic therapy when compared with viral vector-mediated cancer therapy for it be replication-deficient or competent. However, to move the "Trojan horse" to a clinic, though, additional requirements need to be satisfied (i) target tumours only and not anywhere else, and (ii) be able to completely kill primary tumours as well as metastases. Current technologies are in place to achieve these goals.
dc.description.peerreviewedYes
dc.description.publicationstatusYes
dc.format.extent385548 bytes
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoeng
dc.publisherBioMed Central
dc.publisher.placeLondon
dc.publisher.urihttp://www.gvt-journal.com/
dc.relation.ispartofstudentpublicationN
dc.relation.ispartofpagefrom1
dc.relation.ispartofpageto12
dc.relation.ispartofissue8
dc.relation.ispartofjournalGenetic Vaccines and Therapy
dc.relation.ispartofvolume6
dc.rights.retentionY
dc.subject.fieldofresearchGenetics
dc.subject.fieldofresearchMicrobiology
dc.subject.fieldofresearchZoology
dc.subject.fieldofresearchcode3105
dc.subject.fieldofresearchcode3107
dc.subject.fieldofresearchcode3109
dc.titleClostridial spores as live 'Trojan horse' vectors for cancer gene therapy: comparison with viral delivery systems
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
dcterms.licensehttp://creativecommons.org/licenses/by/2.0
gro.facultyGriffith Health, School of Medical Science
gro.rights.copyright© 2008 Wei et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
gro.date.issued2008
gro.hasfulltextFull Text
gro.griffith.authorWei, Ming Q.


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record