Nonequilibrium free-energy relations for thermal changes

View/ Open
Author(s)
Williams, Stephen R.
Bernhardt, Debra
Evans, Denis J.
Griffith University Author(s)
Year published
2008
Metadata
Show full item recordAbstract
The Jarzynski equality and the Crooks fluctuation theorem enable the calculation of the change in a system's free energy from nonequilibrium path integrals. These relations consider processes where the system is driven out of equilibrium by a mechanical external agent while remaining in contact with a thermal reservoir at a fixed temperature. We generalize these relations to describe processes driven by any type of external agent, be it thermal or mechanical. Attention is given to the case of a system, initially in equilibrium, that is driven through a temperature change by a heat reservoir. The results are cast in a form ...
View more >The Jarzynski equality and the Crooks fluctuation theorem enable the calculation of the change in a system's free energy from nonequilibrium path integrals. These relations consider processes where the system is driven out of equilibrium by a mechanical external agent while remaining in contact with a thermal reservoir at a fixed temperature. We generalize these relations to describe processes driven by any type of external agent, be it thermal or mechanical. Attention is given to the case of a system, initially in equilibrium, that is driven through a temperature change by a heat reservoir. The results are cast in a form applicable to experiments.
View less >
View more >The Jarzynski equality and the Crooks fluctuation theorem enable the calculation of the change in a system's free energy from nonequilibrium path integrals. These relations consider processes where the system is driven out of equilibrium by a mechanical external agent while remaining in contact with a thermal reservoir at a fixed temperature. We generalize these relations to describe processes driven by any type of external agent, be it thermal or mechanical. Attention is given to the case of a system, initially in equilibrium, that is driven through a temperature change by a heat reservoir. The results are cast in a form applicable to experiments.
View less >
Journal Title
Physical Review Letters
Volume
100
Publisher URI
Copyright Statement
© 2008 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal link for access to the definitive, published version.
Subject
Mathematical sciences
Physical sciences
Engineering