• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Fluctuation Theorems

    Author(s)
    Sevick, E.
    Prabhakar, R.
    Williams, Stephen R.
    Bernhardt, Debra
    Griffith University Author(s)
    Bernhardt, Debra J.
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    Fluctuation theorems, developed over the past 15 years, have resulted in fundamental breakthroughs in our understanding of how irreversibility emerges from reversible dynamics and have provided new statistical mechanical relationships for free-energy changes. They describe the statistical fluctuations in time-averaged properties of many-particle systems such as fluids driven to nonequilibrium states and provide some of the few analytical expressions that describe nonequilibrium states. Quantitative predictions on fluctuations in small systems that are monitored over short periods can also be made, and therefore the fluctuation ...
    View more >
    Fluctuation theorems, developed over the past 15 years, have resulted in fundamental breakthroughs in our understanding of how irreversibility emerges from reversible dynamics and have provided new statistical mechanical relationships for free-energy changes. They describe the statistical fluctuations in time-averaged properties of many-particle systems such as fluids driven to nonequilibrium states and provide some of the few analytical expressions that describe nonequilibrium states. Quantitative predictions on fluctuations in small systems that are monitored over short periods can also be made, and therefore the fluctuation theorems allow thermodynamic concepts to be extended to apply to finite systems. For this reason, we anticipate an important role for fluctuation theorems in the design of nanotechnological devices and in the understanding of biological processes. This review discusses these theorems, their physical significance, and results for experimental and model systems.
    View less >
    Journal Title
    Annual Review of Physical Chemistry
    Volume
    59
    Publisher URI
    http://physchem.annualreviews.org
    DOI
    https://doi.org/10.1146/annurev.physchem.58.032806.104555
    Copyright Statement
    © 2008 Annual Reviews. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Physical chemistry
    Theoretical and computational chemistry
    Publication URI
    http://hdl.handle.net/10072/21775
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander