• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A Smoothness Constraint Set based on Local Statistics of BDCT Coefficients for Image Postprocessing

    Author(s)
    Gan, XC
    Liew, AWC
    Yan, H
    Griffith University Author(s)
    Liew, Alan Wee-Chung
    Year published
    2005
    Metadata
    Show full item record
    Abstract
    In blocking artifacts reduction based on the projection onto convex sets (POCS) technique, good constraint sets are very important. Until recently, smoothness constraint sets (SCS) are often formulated in the image domain, whereas quantization constraint set is defined in the block-based discrete cosine transform (BDCT) domain. Thus, frequent BDCT transform is inevitable in alternative projections. In this paper, based on signal and quantization noise statistics, we proposed a novel smoothness constraint set in the BDCT transform domain via the Wiener filtering concept. Experiments show that POCS using this smoothness ...
    View more >
    In blocking artifacts reduction based on the projection onto convex sets (POCS) technique, good constraint sets are very important. Until recently, smoothness constraint sets (SCS) are often formulated in the image domain, whereas quantization constraint set is defined in the block-based discrete cosine transform (BDCT) domain. Thus, frequent BDCT transform is inevitable in alternative projections. In this paper, based on signal and quantization noise statistics, we proposed a novel smoothness constraint set in the BDCT transform domain via the Wiener filtering concept. Experiments show that POCS using this smoothness constraint set not only has good convergence but also has better objective and subjective performance. Moreover, this set can be used as extra constraint set to improve most existing POCS-based image postprocessing methods.
    View less >
    Journal Title
    Image and Vision Computing
    Volume
    23
    Issue
    8
    Publisher URI
    http://www.sciencedirect.com/science/journal/02628856
    DOI
    https://doi.org/10.1016/j.imavis.2005.05.001
    Subject
    Artificial Intelligence and Image Processing
    Electrical and Electronic Engineering
    Publication URI
    http://hdl.handle.net/10072/21800
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander