Analytical solutions to the transient, unsaturated transport of water and contaminants through horizontal porous media
Author(s)
Sander, GC
Braddock, RD
Griffith University Author(s)
Year published
2005
Metadata
Show full item recordAbstract
We present a range of analytical solutions to the combined transient water and solute transport for horizontal flow. We adopt the concept of a scale and time dependent dispersivity used for contaminant transport in aquifers and apply it to transient, unsaturated horizontal flow to develop similarity solutions for both constant solute concentration and solute flux boundary conditions. Through the use of a specific form of the water profile as used by Brutsaert [Water Resour Res 1968:4;785], the solute profiles can be reduced to a simple quadrature. We also derive a solution for the instantaneous injection of water and solute ...
View more >We present a range of analytical solutions to the combined transient water and solute transport for horizontal flow. We adopt the concept of a scale and time dependent dispersivity used for contaminant transport in aquifers and apply it to transient, unsaturated horizontal flow to develop similarity solutions for both constant solute concentration and solute flux boundary conditions. Through the use of a specific form of the water profile as used by Brutsaert [Water Resour Res 1968:4;785], the solute profiles can be reduced to a simple quadrature. We also derive a solution for the instantaneous injection of water and solute into a horizontal media for an arbitrary dispersivity. It is found that the solute concentration remains constant in both space and time as the water redistributes, suggesting that the solute does not disperse relative to the water.
View less >
View more >We present a range of analytical solutions to the combined transient water and solute transport for horizontal flow. We adopt the concept of a scale and time dependent dispersivity used for contaminant transport in aquifers and apply it to transient, unsaturated horizontal flow to develop similarity solutions for both constant solute concentration and solute flux boundary conditions. Through the use of a specific form of the water profile as used by Brutsaert [Water Resour Res 1968:4;785], the solute profiles can be reduced to a simple quadrature. We also derive a solution for the instantaneous injection of water and solute into a horizontal media for an arbitrary dispersivity. It is found that the solute concentration remains constant in both space and time as the water redistributes, suggesting that the solute does not disperse relative to the water.
View less >
Journal Title
Advances in Water Resources
Volume
28
Issue
10
Subject
Applied mathematics
Civil engineering
Water resources engineering
Environmental engineering