• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The crystal structure of annexin Gh1 from Gossypium hirsutum reveals an unusual S3 cluster

    Author(s)
    Hofmann, A
    Delmer, DP
    Wlodawer, A
    Griffith University Author(s)
    Hofmann, Andreas
    Year published
    2003
    Metadata
    Show full item record
    Abstract
    The three-dimensional crystal structure of recombinant annexin Gh1 from Gossypium hirsutum (cotton fibre) has been determined and refined to the final R-factor of 0.219 at the resolution of 2.1 A. This plant annexin consists of the typical 'annexin fold' and is similar to the previously solved bell pepper annexin Anx24(Ca32), but significant differences are seen when compared to the structure of nonplant annexins. A comparison with the structure of the mammalian annexin AnxA5 indicates that canonical calcium binding is geometrically possible within the membrane loops in domains I and II of Anx(Gh1) in their present conformation. ...
    View more >
    The three-dimensional crystal structure of recombinant annexin Gh1 from Gossypium hirsutum (cotton fibre) has been determined and refined to the final R-factor of 0.219 at the resolution of 2.1 A. This plant annexin consists of the typical 'annexin fold' and is similar to the previously solved bell pepper annexin Anx24(Ca32), but significant differences are seen when compared to the structure of nonplant annexins. A comparison with the structure of the mammalian annexin AnxA5 indicates that canonical calcium binding is geometrically possible within the membrane loops in domains I and II of Anx(Gh1) in their present conformation. All plant annexins possess a conserved tryptophan residue in the AB loop of the first domain; this residue was found to adopt both a loop-in and a loop-out conformation in the bell pepper annexin Anx24(Ca32). In Anx(Gh1), the conserved tryptophan residue is in a surface-exposed position, half way between both conformations observed in Anx24(Ca32). The present structure reveals an unusual sulfur cluster formed by two cysteines and a methionine in domains II and III, respectively. While both cysteines adopt the reduced thiolate forms and are separated by a distance of about 5.5 A, the sulfur atom of the methionine residue is in their close vicinity and apparently interacts with both cysteine sulfur atoms. While the cysteine residues are conserved in at least five plant annexins and in several mammalian members of the annexin family of proteins, the methionine residue is conserved only in three plant proteins. Several of these annexins carrying the conserved residues have been implicated in oxidative stress response. We therefore hypothesize that the cysteine motif found in the present structure, or possibly even the entire sulfur cluster, forms the molecular basis for annexin function in oxidative stress response.
    View less >
    Journal Title
    European Journal of Biochemistry
    Volume
    270
    DOI
    https://doi.org/10.1046/j.1432-1033.2003.03612.x
    Subject
    Medicinal and biomolecular chemistry
    Biochemistry and cell biology
    Medical biochemistry and metabolomics
    Publication URI
    http://hdl.handle.net/10072/22208
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander