A Comprehensive Transcript Map of the Mouse Gnas Imprinted Complex

View/ Open
File version
Version of Record (VoR)
Author(s)
Holmes, Rebecca
Williamson, Christine
Peters, Jo
Denny, Paul
Group, RIKEN GER
Members, GSL
Wells, Christine
Griffith University Author(s)
Year published
2003
Metadata
Show full item recordAbstract
The recent publication of the FANTOM mouse transcriptome has provided a unique opportunity to study the diversity of transcripts arising from a single gene locus. We have focused on the Gnas complex, as imprinting loci themselves provide unique insights into transcriptional regulation. Thirteen full-length cDNAs from the FANTOM2 set were mapped to the Gnas locus. These represented one previously described transcript and 12 putative new transcripts. Of these, eight were found to be differentially expressed from either the maternal or paternal allele. Two clones extended Nespas in the 3_ direction, providing evidence of antisense ...
View more >The recent publication of the FANTOM mouse transcriptome has provided a unique opportunity to study the diversity of transcripts arising from a single gene locus. We have focused on the Gnas complex, as imprinting loci themselves provide unique insights into transcriptional regulation. Thirteen full-length cDNAs from the FANTOM2 set were mapped to the Gnas locus. These represented one previously described transcript and 12 putative new transcripts. Of these, eight were found to be differentially expressed from either the maternal or paternal allele. Two clones extended Nespas in the 3_ direction, providing evidence of antisense transcription spanning a 30-kb genomic region from a single allele. The transcripts were summarized into six transcriptional units, Nespas, Nesp, Gnasxl, F7, exon 1A, and Gnas. The resolution of the Gnas transcript map by the FANTOM2 clones revealed a pattern of alternate splicing. In addition to the transcripts described previously as splicing onto exon 2 of Gnas, each new sense transcript had an alternate short 3_UTR independent of Gnas. Both spliced and unspliced variants of the new imprinted sense transcripts were found. Whereas the functional significance of these alternate transcripts is not known, the availability of the FANTOM clones has provided remarkable insights into the repertoire of transcripts in the Gnas complex locus.
View less >
View more >The recent publication of the FANTOM mouse transcriptome has provided a unique opportunity to study the diversity of transcripts arising from a single gene locus. We have focused on the Gnas complex, as imprinting loci themselves provide unique insights into transcriptional regulation. Thirteen full-length cDNAs from the FANTOM2 set were mapped to the Gnas locus. These represented one previously described transcript and 12 putative new transcripts. Of these, eight were found to be differentially expressed from either the maternal or paternal allele. Two clones extended Nespas in the 3_ direction, providing evidence of antisense transcription spanning a 30-kb genomic region from a single allele. The transcripts were summarized into six transcriptional units, Nespas, Nesp, Gnasxl, F7, exon 1A, and Gnas. The resolution of the Gnas transcript map by the FANTOM2 clones revealed a pattern of alternate splicing. In addition to the transcripts described previously as splicing onto exon 2 of Gnas, each new sense transcript had an alternate short 3_UTR independent of Gnas. Both spliced and unspliced variants of the new imprinted sense transcripts were found. Whereas the functional significance of these alternate transcripts is not known, the availability of the FANTOM clones has provided remarkable insights into the repertoire of transcripts in the Gnas complex locus.
View less >
Journal Title
Genome Research
Volume
13
Issue
6B
Copyright Statement
© The Author(s) 2003. This is an Open Access article distributed under the terms of the Creative Commons CC-BY-NC License (Attribution-NonCommercial 3.0 Unported License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Subject
Genetics not elsewhere classified
Biological Sciences
Medical and Health Sciences