• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Contrasting patterns of genetic structure and disequilibrium in populations of a stone-cased caddisfly (Tasimiidae) from northern and southern Australia

    Author(s)
    Schultheis, Alicia Slater
    Marchant, Richard
    Hughes, Jane Margaret
    Griffith University Author(s)
    Hughes, Jane M.
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    In marine and freshwater invertebrate populations, microscale genetic differentiation or 'genetic patchiness' is thought to result from variation in the abundance and genetic composition of new recruits at a particular location. In the present study, the role of the adult emergence patterns in genetic patchiness was examined using mtDNA and two microsatellite loci to compare patterns of genetic differentiation in asynchronously (subtropical) and synchronously emerging (temperate) populations of the stone-cased caddisfly Tasimia palpata. A 550 base pair region of the mitochondrial cytochrome c oxidase subunit I gene (COI) was ...
    View more >
    In marine and freshwater invertebrate populations, microscale genetic differentiation or 'genetic patchiness' is thought to result from variation in the abundance and genetic composition of new recruits at a particular location. In the present study, the role of the adult emergence patterns in genetic patchiness was examined using mtDNA and two microsatellite loci to compare patterns of genetic differentiation in asynchronously (subtropical) and synchronously emerging (temperate) populations of the stone-cased caddisfly Tasimia palpata. A 550 base pair region of the mitochondrial cytochrome c oxidase subunit I gene (COI) was sequenced in at least 14 individuals from each population. Genetic structure was detected only at the reach scale in the subtropical populations and no genetic differentiation was detected in temperate populations. There were more deviations from Hardy-Weinberg equilibrium (HWE) in subtropical populations than in temperate populations where 44% and 12.5%, respectively, of tests for deviations from HWE were significant. Although distinct patterns of genetic structure and deviations from HWE were observed in the subtropical and temperate populations of T. palpata, no conclusive evidence was found to suggest that the differences are caused by differences in emergence patterns. We hypothesise that genetic patchiness must be caused by post-recruitment processes, most likely the preservation of oviposition 'hotspots' in subtropical streams.
    View less >
    Journal Title
    Marine and Freshwater Research
    Volume
    59
    DOI
    https://doi.org/10.1071/MF07104
    Subject
    Genetics not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/22506
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander