Toxic effects of chlorate on three plant species inoculated with arbuscular mycorrhizal fungi
Author(s)
Li, H
Zhang, X
Lin, C
Wu, Q
Griffith University Author(s)
Year published
2008
Metadata
Show full item recordAbstract
Pot experiments were conducted to examine the toxic effects of chlorate on bermudagrass, bahiagrass, and longan seedling with a focus on arbuscular mycorrhizal fungi-plant associations. The results show that application of chlorate could cause slight soil acidification, but the resulting pH was still around 5.5, which is unlikely to adversely affect plant growth. Increase in the application rate of chlorate resulted in a decrease in colonization rate of arbuscular mycorrhizal fungi in plant roots, P uptake by the plants and plant biomass. This appears to suggest that the reduction in plant growth may be related to impeded ...
View more >Pot experiments were conducted to examine the toxic effects of chlorate on bermudagrass, bahiagrass, and longan seedling with a focus on arbuscular mycorrhizal fungi-plant associations. The results show that application of chlorate could cause slight soil acidification, but the resulting pH was still around 5.5, which is unlikely to adversely affect plant growth. Increase in the application rate of chlorate resulted in a decrease in colonization rate of arbuscular mycorrhizal fungi in plant roots, P uptake by the plants and plant biomass. This appears to suggest that the reduction in plant growth may be related to impeded uptake of P by the plants due to the failure of the plants to form sufficient mycorrhizal associations when chlorate is in sufficient amounts to cause toxicity to arbuscular mycorrhizal fungi. Under the experimental conditions set for this study, bermudagrass suffered from stronger chlorate stress than bahiagrass and longan seedling did in terms of plant-arbuscular mycorrhizal fungi (AMF) symbiosis development. 頲008.
View less >
View more >Pot experiments were conducted to examine the toxic effects of chlorate on bermudagrass, bahiagrass, and longan seedling with a focus on arbuscular mycorrhizal fungi-plant associations. The results show that application of chlorate could cause slight soil acidification, but the resulting pH was still around 5.5, which is unlikely to adversely affect plant growth. Increase in the application rate of chlorate resulted in a decrease in colonization rate of arbuscular mycorrhizal fungi in plant roots, P uptake by the plants and plant biomass. This appears to suggest that the reduction in plant growth may be related to impeded uptake of P by the plants due to the failure of the plants to form sufficient mycorrhizal associations when chlorate is in sufficient amounts to cause toxicity to arbuscular mycorrhizal fungi. Under the experimental conditions set for this study, bermudagrass suffered from stronger chlorate stress than bahiagrass and longan seedling did in terms of plant-arbuscular mycorrhizal fungi (AMF) symbiosis development. 頲008.
View less >
Journal Title
Ecotoxicology and Environmental Safety
Volume
71
Issue
3
Subject
Chemical sciences
Environmental sciences
Environmental management not elsewhere classified
Biomedical and clinical sciences