• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Is correlation dimension a reliable proxy for the number of dominant influencing variables for modeling risk of arsenic contamination in groundwater?

    Author(s)
    Hill, Jason
    Hossain, Faisal
    Sivakumar, Bellie
    Griffith University Author(s)
    Bellie, Sivakumar
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    The correlation dimension (CD) of a time series provides information on the number of dominant variables present in the evolution of the underlying system dynamics. In this study, we explore, using logistic regression (LR), possible physical connections between the CD and the mathematical modeling of risk of arsenic contamination in groundwater. Our database comprises a large-scale arsenic survey conducted in Bangladesh. Following the recommendation by Hossain and Sivakumar (Stoch Environ Res Risk Assess 20(1-2):66-76, 2006), who reported CD values ranging from 8 to 11 for this database, 11 variables are considered herein ...
    View more >
    The correlation dimension (CD) of a time series provides information on the number of dominant variables present in the evolution of the underlying system dynamics. In this study, we explore, using logistic regression (LR), possible physical connections between the CD and the mathematical modeling of risk of arsenic contamination in groundwater. Our database comprises a large-scale arsenic survey conducted in Bangladesh. Following the recommendation by Hossain and Sivakumar (Stoch Environ Res Risk Assess 20(1-2):66-76, 2006), who reported CD values ranging from 8 to 11 for this database, 11 variables are considered herein as indicators of the aquifer's geochemical regime with potential influence on the arsenic concentration in groundwater. A total of 2,048 possible combinations of influencing variables are considered as candidate LR risk models to delineate the impact of the number of variables on the prediction accuracy of the model. We find that the uncertainty associated with prediction of wells as safe and unsafe by LR risk model declines systematically as the total number of influencing variables increases from 7 to 11. The sensitivity of the mean predictive performance also increases noticeably for this range. The consistent reduction in predictive uncertainty coupled with the increased sensitivity of the mean predictive behavior within the universal sample space exemplify the ability of CD to function as a proxy for the number of dominant influencing variables. Such a rapid proxy, based on non-linear dynamic concepts, appears to have considerable merit for application in current management strategies on arsenic contamination in developing countries, where both time and resources are very limited. 頓pringer-Verlag 2006.
    View less >
    Journal Title
    Stochastic Environmental Research and Risk Assessment
    Volume
    22
    Issue
    1
    DOI
    https://doi.org/10.1007/s00477-006-0098-6
    Subject
    Mathematical sciences
    Engineering
    Other engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/23451
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander