• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A comparative overview of weathering intensity and HCO3- flux in the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers

    Author(s)
    Cai, Wei-Jun
    Guo, Xianghui
    Chen, Chen-Tung Arthur
    Dai, Minhan
    Zhang, Longjun
    Zhai, Weidong
    Lohrenz, Steven E
    Yin, Kedong
    Harrison, Paul J
    Wang, Yongchen
    Griffith University Author(s)
    Yin, Kedong
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    In this paper, general relationships of riverine bicarbonate concentrations and fluxes as a function of drainage basin mineral content and runoff are examined using a database of the 25 largest rivers in the world. Specific HCO3 flux normalized to unit basin area, which peaks in the mid latitudes, was found to be strongly correlated with the carbonate mineral content of river basins, while river HCO3 concentration was related to the balance of precipitation and evaporation. Within this global context, the weathering patterns of CO2 in a few large rivers (Changjiang, Huanghe, Pearl, and Mississippi rivers) were examined in ...
    View more >
    In this paper, general relationships of riverine bicarbonate concentrations and fluxes as a function of drainage basin mineral content and runoff are examined using a database of the 25 largest rivers in the world. Specific HCO3 flux normalized to unit basin area, which peaks in the mid latitudes, was found to be strongly correlated with the carbonate mineral content of river basins, while river HCO3 concentration was related to the balance of precipitation and evaporation. Within this global context, the weathering patterns of CO2 in a few large rivers (Changjiang, Huanghe, Pearl, and Mississippi rivers) were examined in further detail. The Zhujiang (Pearl River), especially its largest branch (Xijiang), was characterized by the highest specific weathering rate among all the world's large rivers due to an exceptionally high carbonate mineral content (over 80%) in its drainage basin and its warm and wet environment. It has a moderate level of HCO3 concentration, however, due to dilution by relatively high precipitation in the watershed. In stark contrast, the Huanghe (Yellow River) has one of the lowest specific weathering rates because of low carbonate mineral content and a dry climate. However, it has a high HCO3 concentration due largely to the concentrating effects of high evaporative water loss, as a result of arid weather and the agricultural use of water through irrigation systems, as well as carbonatecontaining surficial deposits (i.e., loess). The strong correlation between specific HCO3 fluxes and discharge in all four rivers with different discharge seasonality suggests that higher precipitation in drainage basins promotes higher weathering rates. For the 25 large rivers studied here, rivers in low (o301), mid (30-601) and high (4601) latitudes have an average HCO3 concentration of 0.584, 1.649, and 1.154mM, respectively, and they account for 42.6%, 47.3% and 10.1%, respectively, of the total global dissolved inorganic carbon flux to the ocean. Thus the mid-latitude rivers carry a disproportionally high dissolved inorganic carbon flux with a relatively small (26%) amount of freshwater discharge. The discharge-averaged global river HCO3 concentration was estimated to be 1.1mM.
    View less >
    Journal Title
    Continental Shelf Research
    Volume
    28
    Issue
    12
    Publisher URI
    http://www.sciencedirect.com/science/journal/02784343
    DOI
    https://doi.org/10.1016/j.csr.2007.10.014
    Copyright Statement
    © 2008 Elsevier. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Earth sciences
    Chemical oceanography
    Biological sciences
    Publication URI
    http://hdl.handle.net/10072/23517
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander