• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Long term repeated burning in a wet sclerophyll forest reduces fungal and bacterial biomass and responses to carbon substrates

    Author(s)
    Campbell, Colin D
    Cameron, Clare M
    Bastias, Brigitte A
    Chen, Chengrong
    Cairney, John WG
    Griffith University Author(s)
    Chen, Chengrong
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    Soils from a long term experiment, established in 1972, incorporating replicated treatments of burning every 2 and 4 years with control plots were sampled in 2005 to determine the changes in microbial community structure, measured using phospholipid fatty acids (PLFAs) and functional diversity measured using multiple substrate induced respiration (SIR) tests (MicroResp™). Microbial biomass (total PLFA) in the 2 year burn treatments was 50% less than both the control and 4-year burn treatments. There was also concomitantly less respiratory activity which mirrored the known changes in soil C and substrate quality. Contrary to ...
    View more >
    Soils from a long term experiment, established in 1972, incorporating replicated treatments of burning every 2 and 4 years with control plots were sampled in 2005 to determine the changes in microbial community structure, measured using phospholipid fatty acids (PLFAs) and functional diversity measured using multiple substrate induced respiration (SIR) tests (MicroResp™). Microbial biomass (total PLFA) in the 2 year burn treatments was 50% less than both the control and 4-year burn treatments. There was also concomitantly less respiratory activity which mirrored the known changes in soil C and substrate quality. Contrary to other studies soil bacterial PLFAs were reduced as much as fungal PLFAs in the 2-year burn and the short term (6 h) SIR of arginine, lysine, galactose and trehalose were significantly inhibited in the 2-year burn soils. The data suggest that a 4-year burn is a more sustainable practice for maintaining the original structure and function of the forest belowground ecosystem.
    View less >
    Journal Title
    Soil Biology & Biochemistry
    Volume
    40
    DOI
    https://doi.org/10.1016/j.soilbio.2008.04.020
    Subject
    Environmental sciences
    Biological sciences
    Agricultural, veterinary and food sciences
    Forestry fire management
    Publication URI
    http://hdl.handle.net/10072/23552
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander